第二十七章 相似
测试1 图形的相似
学习要求
1.理解相似图形、相似多边形和相似比的概念. 2.掌握相似多边形的两个基本性质.
3.理解四条线段是“成比例线段”的概念,掌握比例的基本性质.
课堂学习检测
一、填空题
1.________________________是相似图形.
2.对于四条线段a,b,c,d,如果____________与____________(如
ac?),那么称bd这四条线段是成比例线段,简称__________________.
3.如果两个多边形满足____________,____________那么这两个多边形叫做相似多边形.
4.相似多边形____________称为相似比.当相似比为1时,相似的两个图形____________.若甲多边形与乙多边形的相似比为k,则乙多边形与甲多边形的相似比为____________.
5.相似多边形的两个基本性质是____________,____________.
6.比例的基本性质是如果不等于零的四个数成比例,那么___________.
ac??______(a,b,c,d不为零). bd7.已知2a-3b=0,b≠0,则a∶b=______. 反之亦真.即8.若9.若
1?x7?,则x=______. x5xyz2x?y?z??,则?______.
x23510.在一张比例尺为1∶20000的地图上,量得A与B两地的距离是5cm,则A,B两
地实际距离为______m.
二、选择题
11.在下面的图形中,形状相似的一组是( )
12.下列图形一定是相似图形的是( )
A.任意两个菱形 B.任意两个正三角形 C.两个等腰三角形 D.两个矩形
13.要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为
50cm,60cm,80cm,三角形框架乙的一边长为20cm,那么,符合条件的三角形框架乙共有( ) A.1种 B.2种 C.3种 D.4种
三、解答题
14.已知:如图,梯形ABCD与梯形A′B′C′D′相似,AD∥BC,A′D′∥B′C′,
∠A=∠A′.AD=4,A′D′=6,AB=6,B′C′=12.求:
(1)梯形ABCD与梯形A′B′C′D′的相似比k; (2)A′B′和BC的长; (3)D′C′∶DC.
综合、运用、诊断
15.已知:如图,△ABC中,AB=20,BC=14,AC=12.△ADE与△ACB相似,
∠AED=∠B,DE=5.求AD,AE的长.
16.已知:如图,四边形ABCD的对角线相交于点O,A′,B′,C′,D′分别是
OA,OB,OC,OD的中点,试判断四边形ABCD与四边形A′B′C'D′是否相似,并说明理由.
拓展、探究、思考
17.如下图甲所示,在矩形ABCD中,AB=2AD.如图乙所示,线段EF=10,在EF
上取一点M,分别以EM,MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD,设MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?
测试2 相似三角形
学习要求
1.理解相似三角形的有关概念,能正确找到对应角、对应边. 2.掌握相似三角形判定的基本定理.
课堂学习检测
一、填空题
1.△DEF∽△ABC表示△DEF与△ABC______,其中D点与______对应,E点与 ______对应,F点与______对应;∠E=______;DE∶AB=______∶BC,AC∶DF=AB∶______.
2.△DEF∽△ABC,若相似比k=1,则△DEF______△ABC;若相似比k=2,则
DFBC?______,?______. ACEF3.若△ABC∽△A1B1C1,且相似比为k1;△A1B1C1∽△A2B2C2,且相似比为k2,则△ABC______△A2B2C2,且相似比为______. 4.相似三角形判定的基本定理是平行于三角形____________和其他两边相交,所_____ ____________与原三角形______. 5.已知:如图,△ADE中,BC∥DE,则
①△ADE∽______; ②
ADAEAD()?,?; AB()ABBCADAEBD()?,?? DB()BACA③
二、解答题
6.已知:如图所示,试分别依下列条件写出对应边的比例式.
(1)若△ADC∽△CDB;
(2)若△ACD∽△ABC;
(3)若△BCD∽△BAC.
综合、运用、诊断
7.已知:如图,△ABC中,AB=20cm,BC=15cm,AD=12.5cm,DE∥BC.求DE的长.
8.已知:如图,AD∥BE∥CF.
ABDE?; ACDF(2)若AB=4,BC=6,DE=5,求EF. (1)求证:
相关推荐: