拓展、探究、思考
20.已知D是BC边延长线上的一点,BC=3CD,DF交AC边于E点,且AE=2EC.试
求AF与FB的比.
21.已知:如图,在△ABC中,∠BAC=90°,AH⊥BC于H,以AB和AC为边在
Rt△ABC外作等边△ABD和△ACE,试判断△BDH与△AEH是否相似,并说明理由.
22.已知:如图,在△ABC中,∠C=90°,P是AB上一点,且点P不与点A重合,
过点P作PE⊥AB交AC于E,点E不与点C重合,若AB=10,AC=8,设AP=x,四边形PECB的周长为y,求y与x的函数关系式.
测试4 相似三角形应用举例
学习要求
能运用相似三角形的知识,解决简单的实际问题.
课堂学习检测
一、选择题
1.已知一棵树的影长是30m,同一时刻一根长1.5m的标杆的影长为3m,则这棵树的高度是( )
A.15m
B.60m
C.20m
D.103m
2.一斜坡长70m,它的高为5m,将某物从斜坡起点推到坡上20m处停止下,停下地点的高度为( ) A.
11m 7B.
10m 7C.
9m 7D.
3m 23.如图所示阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐距地面的距离BC=1m,EC=1.2m,那么窗户的高AB为( )
第3题图
A.1.5m B.1.6m C.1.86m D.2.16m 4.如图所示,AB是斜靠在墙壁上的长梯,梯脚B距离墙角1.6m,梯上点D距离墙1.4m,BD长0.55m,则梯子长为( )
A.3.85m B.4.00m D.4.50m 二、填空题
5.如图所示,为了测量一棵树AB的高度,测量者在D点立一高CD=2m的标杆,现测量者从E处可以看到杆顶C与树顶A在同一条直线上,如果测得BD=20m,FD=4m,EF=1.8m,则树AB的高度为______m.
第4题图
C.4.40m
第5题图
6.如图所示,有点光源S在平面镜上面,若在P点看到点光源的反射光线,并测得AB
=10m,BC=20cm,PC⊥AC,且PC=24cm,则点光源S到平面镜的距离即SA的长度为______cm.
第6题图
三、解答题
7.已知:如图所示,要在高AD=80mm,底边BC=120mm的三角形余料中截出一个正方形板材PQMN.求它的边长.
8.如果课本上正文字的大小为4mm×3.5mm(高×宽),一学生座位到黑板的距离是5m,教师在黑板上写多大的字,才能使该学生望去时,同他看书桌上相距30cm垂直放置的课本上的字感觉相同?
综合、运用、诊断
9.一位同学想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.8m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图所示,他先测得留在墙上的影高为1.2m,又测得地面部分的影长为5m,请算一下这棵树的高是多少?
10.(针孔成像问题)根据图中尺寸(如图,AB∥A′B′),可以知道物像A′B′的长与
物AB的长之间有什么关系?你能说出其中的道理吗?
11.在一次数学活动课上,李老师带领学生去测教学楼的高度,在阳光下,测得身高为
1.65m的黄丽同学BC的影长BA为1.1m,与此同时,测得教学楼DE的影长DF为12.1m,如图所示,请你根据已测得的数据,测出教学楼DE的高度.(精确到0.1m)
12.(1)已知:如图所示,矩形ABCD中,AC,BD相交于O点,OE⊥BC于E点,连
结ED交OC于F点,作FG⊥BC于G点,求证点G是线段BC的一个三等分点.
(2)请你仿照上面的画法,在原图上画出BC的一个四等分点.(要求:写出作法,保留画图痕迹,不要求证明)
测试5 相似三角形的性质
学习要求
掌握相似三角形的性质,解决有关的计算或证明问题.
课堂学习检测
一、填空题
1.相似三角形的对应角______,对应边的比等于______.
2.相似三角形对应边上的中线之比等于______,对应边上的高之比等于______,对应角的角平分线之比等于______. 3.相似三角形的周长比等于______.
相关推荐: