最新整理高三物理20 高考物理万有引力定律与天体
运动复习
第5课时万有引力定律与天体运动
导学目标1.掌握万有引力定律的内容、公式及适用条件.2.学会用万有引力定律解决天体运动问题.
一、开普勒三定律 [基础导引]
开普勒行星运动三定律不仅适用于行星绕太阳的运动,也适用于卫星绕行星的运动.如果一颗人造地球卫星沿椭圆轨道运动,它在离地球最近的位置(近地点)和最远的位置(远地点),哪点的速度比较大?
[知识梳理]
1.开普勒第一定律:所有行星绕太阳运动的轨道都是________,太阳处在椭圆的一个________上.
2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相同的时间内扫过相等的________.
3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的________________的比值都相等,即a3T2=k.
思考:开普勒第三定律中的k值有什么特点? 二、万有引力定律 [基础导引]
根据万有引力定律和牛顿第二定律说明:为什么不同物体在
地球表面的重力加速度都是相等的?为什么高山上的重力加速度比地面的小?
[知识梳理] 1.内容
自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与________________________________成正比,与它们之间____________________成反比.
2.公式
____________,通常取G=____________N m2/kg2,G是比例系数,叫引力常量.
3.适用条件
公式适用于________间的相互作用.当两物体间的距离远大于物体本身的大小时,物体可视为质点;均匀的球体可视为质点,r是__________间的距离;对一个均匀球体与球外一个质点的万有引力的求解也适用,其中r为球心到________间的距离.
考点一天体产生的重力加速度问题 考点解读
星体表面及其某一高度处的重力加速度的求法:
设天体表面的重力加速度为g,天体半径为R,则mg=GMmR2,即g=GMR2(或GM=gR2)
若物体距星体表面高度为h,则重力mg′=GMm(R+h)2,即g′=GM(R+h)2=R2(R+h)2g.
典例剖析
例1某星球可视为球体,其自转周期为T,在它的两极处,用弹簧秤测得某物体重为P,在它的赤道上,用弹簧秤测得同一物体重为0.9P,则星球的平均密
度是多少?
跟踪训练11990年5月,紫金山天文台将他们发现的第2752号小行星命名为吴健雄星,该小行星的半径为16km.若将此小行星和地球均看成质量分布均匀的球体,小行星密度与地球相同.已知地球半径R=6400km,地球表面重力加速度为g.这个小行星表面的重力加速度为()
A.400gB.1400gC.20gD.120g 考点二天体质量和密度的计算 考点解读
1.利用天体表面的重力加速度g和天体半径R.
由于GMmR2=mg,故天体质量M=gR2G,天体密度ρ=MV=M43πR3=3g4πGR.
2.通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r.
(1)由万有引力等于向心力,即GMmr2=m4π2T2r,得出中心天体质量M=4π2r3GT2;
(2)若已知天体的半径R,则天体的密度ρ=MV=M43πR3=3πr3GT2R3; (3)若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r等于天体半径R,则天体密度ρ=3πGT2.可见,只要测出卫星环绕天体表面运动的周期T,就可估测出中心天体的密度.
特别提醒不考虑天体自转,对任何天体表面都可以认为mg=GMmR2.从而得出GM=gR2(通常称为黄金代换),其中M为该天体的质量,R为该天体的半径,g为相应天体表面的重力加速度.
典例剖析
例2天文学家新发现了太阳系外的一颗行星,这颗行星的体积是地球的4.7
倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11N m2/kg2,由此估算该行星的平均密度约为()
A.1.8×103kg/m3B.5.6×103kg/m3 C.1.1×104kg/m3D.2.9×104kg/m3
跟踪训练2为了对火星及其周围的空间环境进行探测,我国于 10月发射了第一颗火星探测器“萤火一号”.假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G.仅利用以上数据,可以计算出()
A.火星的密度和火星表面的重力加速度 B.火星的质量和火星对“萤火一号”的引力 C.火星的半径和“萤火一号”的质量
D.火星表面的重力加速度和火星对“萤火一号”的引力 3.双星模型
例3宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动而不至因万有引力的作用吸引到一起.
(1)试证明它们的轨道半径之比、线速度之比都等于质量的反比.
(2)设两者的质量分别为m1和m2,两者相距L,试写出它们角速度的表达式. 建模感悟
1.要明确双星中两颗子星做匀速圆周运动的向心力来源
双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供.由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小.
2.要明确双星中两颗子星做匀速圆周运动的运动参量的关系
相关推荐: