方案设计
三.解答题
1. (2019?湖北黄石?7分)图1.2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.
中&%国教*^育出版网
(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方形顶点上; (2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD的面积为8.
【分析】(1)作AC的垂直平分线,作以AC为直径的圆,垂直平分线与圆的交点即为点B;
(2)以C为圆心,AC为半径作圆,格点即为点D;
中@国教育%出版~*网
【解答】解;(1)作AC的垂直平分线,作以AC为直径的圆,垂直平分线与圆的交点即为点B;
来@^*源:%zzstep.&com]
(2)以C为圆心,AC为半径作圆,格点即为点D;
【点评】本题考查尺规作图,等腰三角形的性质;熟练掌握等腰三角形和直角三角形的尺规作图方法是解题的关键.
2. (2019?湖南怀化?12分)某射箭队准备从王方、李明二人中选拔1人参加射箭比赛,在选拔赛中,两人各射箭10次的成绩(单位:环数)如下:
次数 王方 李明 1 7 8 2 10 9 3 9 8 4 8 9 5 6 8 6 9 8 中国%教@*育出版网&]7 9 9
8 7 8 9 10 10 10 10 8 (1)根据以上数据,将下面两个表格补充完整:王方10次射箭得分情况
环数 频数 频率 6 1 0.1 7 2 0.2 8 1 0.1 9 3 0.3 10 3 0.3 李明10次射箭得分情况
环数 频数 频率 6 0 0 7 0 0 8 6 0.6 来~%源#:中国教育出版网&]9 3 0.3 10 1 0.1 (2)分别求出两人10次射箭得分的平均数;
[ww&w.~z*zs@tep.co#m](3)从两人成绩的稳定性角度分析,应选派谁参加比赛合适.【分析】(1)根据各组的频数除以10即可得到结论; (2)根据加权平均数的定义即可得到结论; (3)根据方差公式即可得到结论. 【解答】解:(1)
环数 频数 频率 6 1 0.1 7 2 0.2 8 1 0.1
9 3 0.3 10 3 0.3 李明10次射箭得分情况
环数 频数 频率 6 0 0 7 0 0 8 6 0.6 9 3 0.3 10 1 0.1 (48+27+10)=
(2)王方的平均数=8.5;
(6+14+8+27+30)=8.5;李明的平均数=
(3)∵S
2
=[(6﹣8.5)+2(7﹣8.5)+(8﹣8.5)+3(9﹣8.5)+3(10﹣8.5)
2222
]=1.85;
=
[6(8﹣8.5)+3(9﹣8.5)+(10﹣8.5)=0.35;
,
2
2
2
S∵S
>S
∴应选派李明参加比赛合适.
【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 3.
[w~ww.z%&zs#tep.c^om]方案设计
三.解答题
来*^源:#zzs@tep.c~om]1. (2019?河南?9分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元. (1)求A,B两种奖品的单价;
(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.
【分析】(1)设A的单价为x元,B的单价为y元,根据题意列出方程组即可求解;
(2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,根据题意得到由题意可知,z≥(30﹣z),W=30z+15(30﹣z)=450+15z,根据一次函数的性质,即可求解;
来源~:&*%中@教网,
【解答】解:(1)设A的单价为x元,B的单价为y元, 根据题意,得
,
∴
,
∴A的单价30元,B的单价15元;
中国教育%出版网@~#*](2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,
由题意可知,z≥(30﹣z), ∴z≥
,
W=30z+15(30﹣z)=450+15z, 当z=8时,W有最小值为570元,
即购买A奖品8个,购买B奖品22个,花费最少;
【点评】本题考查二元一次方程组的应用,一次函数的应用;能够根据条件列出方程组,将最优方案转化为一次函数性质解题是关键.
2.(2019?天津?10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg。在乙批发店,一次购买数量不超过50kg时,价格均为7元/kg;一次性购买超过50kg时,其中有50kg的价格仍为7元/kg,超过50kg的部分价格为5元/kg. 设小王在同一个批发店一次购买苹果的数量为xkg(x>0)
中国~@&教育出#*版网(1)根据题意填表:
(2)设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式; (3)根据题意填空:
①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次性购买苹果的数量为 kg;
[www.zz^s%#t@ep.~com②若小王在同一个批发店一次性购买苹果的数量为120kg,则他在甲、乙两个批发店中的 批发店购买花费少;
③若小王在同一个批发店一次性购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.
[www.%^zz#step.co&m*]【解析】(1)由题意可得:在甲批发店购买30kg需要付款:30×6=180元; 在甲批发店购买150kg,需要付款:150×6=900元. 在乙批发店购买30kg需要付款:30×7=210元;
在乙批发店购买150kg,需要付款:50×7+(150-50)×5=850
元.
来源中国教育出~%#&版网
(2)由题意可得y1?6x(x?0),y2??(3)①6x?5x?100,x?100
?7x,(0?x?50)
?7?50?5(x?50)?5x?100,(x?50)②购买甲批发店120kg需要花费120×6=720元
[www~.#zzst&*e@p.com 购买乙批发店120kg需要花费:5×120+100=700元 故选乙批发店.
③在甲店可以购买360=6x,即x=60
来源#:中教&~网%] 在乙店可以购买360=5x+100,即x=52 故选甲.
来源:zzs*tep^&.co@m~]3.(2019?广西北部湾经济区)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同. (1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?
(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.
(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?
[www.~z*zs@tep.c#om^【答案】解:(1)设每袋国旗图案贴纸为x元,则有,
中国教育出版网解得x=15,
经检验x=15时方程的解, ∴每袋小红旗为15+5=20元;
答:每袋国旗图案贴纸为15元,每袋小红旗为20元;
(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1, 解得b=a,
答:购买小红旗a袋恰好配套;
中国教育出版&~网#@](3)如果没有折扣,则W=15a+20×a=40a,
依题意得40a≤800, 解得a≤20,
当a>20时,则W=800+0.8(40a-800)=32a+160, 即W=
,
国旗贴纸需要:1200×2=2400张, 小红旗需要:1200×1=1200面, 则a=
=48袋,b=
=60袋,
总费用W=32×48+160=1696元. 【解析】
中%#国教育出版网(1)设每袋国旗图案贴纸为x元,则有,解得x=15,检验后即可求解;
(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a; (3)如果没有折扣,W=要:1200×1=1200面,则a=
=48袋,b=
,国旗贴纸需要:1200×2=2400张,小红旗需=60袋,总费用W=32×48+160=1696元.
本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.
中国教育&出^*@版网#]方案设计
一.选择题
来源:@中教网*&%#]1. (2019?黑龙江省绥化市?3分)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有( ) A.5种 答案:C
考点:二元一次方程,不等式。
来源:%@中~^*教网B.4种 C.3种 D.2种
解析:设A种玩具的数量为x,B种玩具的数量为y, 则x?2y?10, 即y?5-x, 2满足条件:x≥1,y≥1,x>y, 当x=2时,y=4,不符合;
当x=4时,y=3,符合; 当x=6时,y=2,符合; 当x=8时,y=1,符合; 共3种购买方案。
2. (2019?黑龙江省齐齐哈尔市?3分)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( ) A.3种 B.4种 C.5种 D.6种
【分析】设购买A品牌足球x个,购买B品牌足球y个,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数即可求出结论. 【解答】解:设购买A品牌足球x个,购买B品牌足球y个, 依题意,得:60x+75y=1500, ∴y=20﹣x. ∵x,y均为正整数,∴
,
,
,
来源:%中国教育出版网,
来^*源:%zzstep.&com@]∴该学校共有4种购买方案. 故选:B. 二.填空题 三.解答题
1.(2019?山东青岛?8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.
来源&:中^*教@#网(1)求甲、乙两人每天各加工多少个这种零件?
(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?
【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;
(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.
【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:
=
+5
化简得600×1.5=600+5×1.5x 解得x=40 ∴1.5x=60
经检验,x=40是分式方程的解且符合实际意义. 答:甲每天加工60个零件,乙每天加工,40个零件. (2)设甲加工了x天,乙加工了y天,则由题意得
来源:z&zste*p~#.^com]
由①得y=75﹣1.5x③
将③代入②得150x+120(75﹣1.5x)≤7800 解得x≥40,
当x=40时,y=15,符合问题的实际意义. 答:甲至少加工了40天.
【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.
2.(2019?山东青岛?10分)问题提出:
如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法? 问题探究:
来源:&*^中教%网#]来源中国%教育出版@网~#*]
为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论. 探究一:
把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.
来源:z#zstep%.&~com^]探究二:
[w~ww.zzs*tep^.&com@]
把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:
把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图⑤,在a×2的方格纸中,共可以找到 (a﹣1) 个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有 (4a﹣4) 种不同的放置方法. 探究四:
把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图⑥,在a×3的方格纸中,共可以找到 (2a﹣2) 个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有 (8a﹣8) 种不同的放置方法. …… 问题解决:
把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)
来%源*:中教网[www.zzste*p.#%co&m@]
问题拓展:
如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到 8(a﹣1)(b﹣1)(c﹣1) 个图⑦这样的几何体.
【分析】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题. 【解答】解:探究三:
中国教育^@出版网#]根据探究二,a×2的方格纸中,共可以找到(a﹣1)个位置不同的 2×2方格,
来源#:中国教育出版网&%]
根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a×2的方格纸中,共可以找到(a﹣1)×4=(4a﹣4)种不同的放置方法; 故答案为a﹣1,4a﹣4; 探究四:
与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a,有(a﹣1)条边长为2的线段,
同理,边长为3,则有3﹣1=2条边长为2的线段,
所以在a×3的方格中,可以找到2(a﹣1)=(2a﹣2)个位置不同的2×2方格, 根据探究一,在在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法. 故答案为2a﹣2,8a﹣8;
问题解决:
在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,
来源:%z~z&step.*c@om]
相关推荐: