第一范文网 - 专业文章范例文档资料分享平台

2012年-2017高考文科数学真题汇编:统计案例和概率老师版

来源:用户分享 时间:2025/7/28 18:10:17 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率; (2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例. 4.解 (1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6, 所以样本中分数小于70的频率为1-0.6=0.4,所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4. (2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人5数为100-100×0.9-5=5,所以总体中分数在区间[40,50)内的人数估计为400×=20. 100(3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60, 1所以样本中分数不小于70的男生人数为60×=30,所以样本中的男生人数为30×2=60, 2女生人数为100-60=40,所以样本中男生和女生人数的比例为60∶40=3∶2, 所以根据分层抽样原理,估计总体中男生和女生人数的比例为3∶2. 1、(2017年全国I卷高考)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸: 抽取次序 零件尺寸 抽取次序 1 9.95 9 2 10.12 10 3 9.96 11 4 9.96 12 5 10.01 13 6 9.92 14 7 9.98 15 8 10.04 16 16 / 23

零件尺寸 10.26 经计算得,9.91 10.13 10.02 9.22 10.04 10.05 9.95 ,,,其中为抽取的第个零件的尺寸, .(1)求的相关系数,并回答是否可以认为这一天生产的零件尺寸不随生产过程的,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变进行而系统地变大或变小(若小). (2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,学.科网是否需对当天的生产过程进行检查? (ⅱ)在之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01) 附:样本的相关系数,. (ii) 剔除9.22,这条生产线当天生产的零件尺寸的均值为 ,标准差为 2、(2016年全国I卷高考)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,17 / 23

在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 频数2420161060161718192021更换的易损零件数 记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数. (I)若=19,求y与x的函数解析式; (II)若要求“需更换的易损零件数不大于”的频率不小于0.5,求的最小值; (III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件? (Ⅱ)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故的最小值为19. (Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为.若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4000,10台的费用为4500,因此这100台机器在购买易损零件上所需费用的平均数为.比较两个平均数可知,购买1台机器的同时应购买19个易损零件. 18 / 23

3、(2015新课标)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费数据作了初步处理,得到下面的散点图及一些统计量的值. 和年销售量 (I)根据散点图判断,与,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由); (II)根据(I)的判断结果及表中数据,建立y关于x的回归方程; (III)已知这种产品的年利润z与x,y的关系为 ,根据(II)的结果回答下列问题: (i)当年宣传费=49时,年销售量及年利润的预报值时多少? (ii)当年宣传费为何值时,年利润的预报值最大? 解:(I)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费的回归方程式类型. (II)令,先建立y关于w的线性回归方程式.由于, 19 / 23

, 所以y关于w的线性回归方程为,因此y关于的回归方程为, ……9分 . (Ⅲ)(i)由(II)知,当=49时,年销售量y的预报值年利润z的预报值 (ii)根据(II)的结果知,年利润z的预报值 所以当,即=46.24时,取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大. ……12分 4、(2014新标1文) 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得 如下频数分布表: 质量指标值分组 [75,85) [85,95) [95,105) [105,115) [115,125) 频数 6 26 38 22 8 (I)在答题卡上作出这些数据的频率分布直方图: (II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表); (III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定? 【答案】(I)略;(II)平均数为100,方差为104; (Ⅲ)不能认为 5、(2013新标1文) 为了比较两种治疗失眠症的药(分别称为药,药)的疗效,随机地选取位患者服用药,位患者服用药,这位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位: ),试验的观测结果如下:服用药的位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用药的位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 20 / 23

2012年-2017高考文科数学真题汇编:统计案例和概率老师版.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c145wc7fhga9y6ym8c7oz9pugm7qnnb00f5n_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top