第一范文网 - 专业文章范例文档资料分享平台

【配套K12】东营专版2019年中考数学复习专题类型突破专题五二次函数综合题训练

来源:用户分享 时间:2025/7/9 1:52:55 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

最新K12教育

【分析】 (1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;

(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于点M,利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;

(3)①过点C作AC的垂线交抛物线于另一点P,利用两直线垂直一次项系数互为负倒数求出直线PC的解析式,当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.

②因为△ACM是以AC为底的等腰三角形,得出MA=MB,然后分类讨论点M在x轴、y轴时的两种情况,进而求出点M的坐标即可. 【自主解答】

是否存在一点,使之与另外两个定点构成等腰三角形(直角三角形)的问题:首先弄清题意(如等腰三角形:若某边为底边,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形,则有三种情况);其次借助于动点所在图形的解析式,表示出动点的坐标;然后按分类的情况,利用几何知识建立方程(组),求出动点坐标,注意要根据题意舍去不符合题意的点. 教案试题

2

2

最新K12教育

3.(2018·临沂中考)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0),抛物线y=-x+bx+c经过A,B两点. (1)求抛物线的解析式;

1

(2)点P是直线AB上方抛物线上的一点.过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE. 2①求点P的坐标;

②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.

2

类型四 抛物线上架构的四边形问题

(2018·齐齐哈尔中考)综合与探究

如图1所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x+bx+c经过点A,C. 教案试题

2

最新K12教育

(1)求抛物线的解析式;

(2)点E在抛物线的对称轴上,求CE+OE的最小值;

(3)如图2所示,点M是线段OA上的一个动点,过点M作垂直于x轴的直线与直线AC和抛物线分别交于点P,N.

①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为________;

②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.

【分析】 (1)把已知点坐标代入解析式;

(2)取点C关于抛物线的对称轴直线l的对称点C′,由两点之间线段最短,最小值可得; (3)①由已知,注意相似三角形的分类讨论.

②设出M坐标,求点P坐标.注意菱形是由等腰三角形以底边所在直线为对称轴对称得到的.本题即为研究△CPN为等腰三角形的情况. 【自主解答】

教案试题

最新K12教育

解答存在性问题的一般思路

解答存在性问题的一般思路是先假设问题存在,然后推理得出结论,进而判断结论是否成立.遇到有两个定点确定平行四边形或其他特殊四边形的问题时,常常要运用分类讨论和数形结合思想,分别画出符合要求的图形,找到所有的答案,分类时要注意不重不漏.

4.(2017·天水中考)如图所示,在平面直角坐标系xOy中,抛物线y=ax-2ax-3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.

(1)求A,B两点的坐标及抛物线的对称轴;

(2)求直线l的函数解析式(其中k,b用含a的式子表示);

5

(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;

4

(4)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.

2

教案试题

【配套K12】东营专版2019年中考数学复习专题类型突破专题五二次函数综合题训练.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c15moi6pqhr1x2cx44e354ncj33s24s019pn_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top