下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.
根据以上规则,回答下列问题:
(1)求一次“有效随机转动”可获得“乐”字的概率;
(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.
类型四:统计与概率的综合应用
【例题4】(2016·山东潍坊)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.
评定等级[来源:学+科+评估成绩n(分)
网Z+X+X+K]
90≤n≤100 80≤n<90 70≤n<80 n<70
根据以上信息解答下列问题: (1)求m的值;
(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示) (3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.
【考点】列表法与树状图法;频数(率)分布表;扇形统计图. 【分析】(1)由C等级频数为15,占60%,即可求得m的值;
A B C D
2 15 6 频数
(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.
【解答】解:(1)∵C等级频数为15,占60%, ∴m=15÷60%=25;
(2)∵B等级频数为:25﹣2﹣15﹣6=2,
∴B等级所在扇形的圆心角的大小为:×360°=°=28°48′;
(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:
∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况, ∴其中至少有一家是A等级的概率为: =. 【同步练】
(烟台市 2015 中考 -20)”切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级,A:1小时以内;B:1小时﹣﹣小时;C:小时﹣﹣2小时;D:2小时以上.根据调查结果绘制了如图所示的两种不完整的统计图,请根据图中信息解答下列问题:
(1)该校共调查了 学生; (2)请将条形统计图补充完整;
(3)表示等级A的扇形圆心角α的度数是 ;
(4)在此次调查问卷中,甲、乙两班各有2人平均每天课外作业量都是2小时以上,从这4人中人选2人去参加座谈,用列表表或画树状图的方法求选出的2人来自不同班级的概率.
类型五:统计概率与其它知识的应用
【例题5】(2016·四川眉山)九年级三班学生苏琪为帮助同桌万宇巩固“平面直角坐标系四个象限内及坐标轴上的点的坐标特点”这一基础知识,在三张完全相同且不透明的卡片正面分别写上了﹣3,0,2三个数字,背面向上洗匀后随机抽取一张,将卡片上的数字记为a,再从剩下的两张中随机取出一张,将卡片上的数字记为b,然后叫万宇在平面直角坐标系中找出点M(a,b)的位置.
(1)请你用树状图帮万宇同学进行分析,并写出点M所有可能的坐标; (2)求点M在第二象限的概率;
(3)张老师在万宇同学所画的平面直角坐标系中,画了一个半径为3的⊙O,过点M能作多少条⊙O的切线?请直接写出答案.
【分析】(1)画树状图展示所有6种等可能的结果数;
(2)根据第二象限点的坐标特征找出点M在第二象限的结果数,然后根据概率公式求解;
(3)画出图形得到在⊙O上的有2个点,在⊙O外的有2个点,在⊙O内的有2个点,则利用切线的定义可得过⊙O上的有2个点分别画一条切线,过⊙O外的有2个点分别画2条切线,但其中有2组切线重合,于是可判断过点M能作4条⊙O的切线.
【解答】解:(1)画树状图为
共有6种等可能的结果数,它们是(﹣3,0)、(﹣3,2)、(0,﹣3)、(0,2)、(2,﹣3)、(2,0);
(2)只有(﹣3,2)在第二象限, 所以∴点M在第二象限的概率=; (3)如图,过点M能作4条⊙O的切线.
【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.利用切线的定义可解决(3)小题,应用数形结合的思想是解决此类题目的关键.
【同步练】
(枣庄市 2015 中考 -21)在大课间活动中,同学们积极参加体育锻炼,小明在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查.下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
(1)小明共抽取 名学生; (2)补全条形统计图;
(3)在扇形统计图中,“立定跳远”部分对应的圆心角的度数是 ; (4)若全校共有2130名学生,请你估算“其他”部分的叙述人数.
【达标检测】
1. (2016·黑龙江哈尔滨·8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;
(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?
2. (2016·湖北荆门·12分)秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:
分 数 段 60≤x<70 70≤x<80 80≤x<90 90≤x≤100
请根据上述统计图表,解答下列问题: (1)在表中,a= ,b= ,c= ; (2)补全频数直方图;
(3)根据以上选取的数据,计算七年级学生的平均成绩.
(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?
3. (2016·云南省昆明市)某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;
(1)这次抽样调查的样本容量是 ,并补全条形图;
(2)D等级学生人数占被调查人数的百分比为 8% ,在扇形统计图中C等级所对应的圆心角为 °;
(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.
频数 9 36 27 c
频率 a b
相关推荐: