第一范文网 - 专业文章范例文档资料分享平台

中考数学专题复习五:统计与概率

来源:用户分享 时间:2025/7/9 9:21:28 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;加权平均数. 【分析】(1)根据表格中的数据可以求得抽查的学生数,从而可以求得a、b、c的值; (2)根据(1)中c的值,可以将频数分布直方图补充完整;

(3)根据平均数的定义和表格中的数据可以求得七年级学生的平均成绩; (4)根据表格中的数据可以求得“优秀”等次的学生数. 【解答】解:(1)抽查的学生数:36÷=90, a=9÷90=,b=27÷90=,c=90×=18, 故答案为:,,18;

(2)补全的频数分布直方图如右图所示, (3)∵=81,

即七年级学生的平均成绩是81分; (4)∵800×(+)=800×=400, 即“优秀”等次的学生约有400人.

3. (2016·云南省昆明市)某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;

(1)这次抽样调查的样本容量是 50 ,并补全条形图;

(2)D等级学生人数占被调查人数的百分比为 8% ,在扇形统计图中C等级所对应的圆心角为 °;

(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.

【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图. 【分析】(1)由A等级的人数和其所占的百分比即可求出抽样调查的样本容量;求出B等级的人数即可全条形图;

(2)用B等级的人数除以总人数即可得到其占被调查人数的百分比;求出C等级所占的百分比,即可求出C等级所对应的圆心角;

(3)由扇形统计图可知A等级所占的百分比,进而可求出九年级学生其中A等级的学生人数.

【解答】解:

(1)由条形统计图和扇形统计图可知总人数=16÷32%=50人,所以B等级的人数=50﹣16﹣10﹣4=20人,

故答案为:50; 补全条形图如图所示:

(2)D等级学生人数占被调查人数的百分比=×100%=8%; 在扇形统计图中C等级所对应的圆心角=8%×360°=°, 故答案为:8%,;

(3)该校九年级学生有1500人,估计其中A等级的学生人数=1500×32%=480人.

4. (2016·青海西宁·8分)随着我省“大美青海,美丽夏都”影响力的扩大,越来越多的游客慕名而来.根据青海省旅游局《2015年国庆长假出游趋势报告》绘制了如下尚不完整的统计图.

根据以上信息解答下列问题:

(1)2015年国庆期间,西宁周边景区共接待游客 50 万人,扇形统计图中“青海湖”所对应的圆心角的度数是 108° ,并补全条形统计图;

(2)预计2016年国庆节将有80万游客选择西宁周边游,请估计有多少万人会选择去贵德旅游?

(3)甲乙两个旅行团在青海湖、塔尔寺、原子城三个景点中,同时选择去同一个景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.

【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.

【分析】(1)根据条形图和扇形图得到游“青海湖”的人数和所占的百分比,计算出共接待游客人数,根据“青海湖”所占的百分比求出圆心角,求出塔尔寺人数,补全条形统计图;

(2)求出选择西宁周边游所占的百分比,计算即可;

(3)列表求出共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,根据概率公式计算即可.

【解答】解:(1)由条形图和扇形图可知,游“青海湖”的人数是15万人,占30%, ∴共接待游客人数为:15÷30%=50(万人),

“青海湖”所对应的圆心角的度数是:360°×30%=108°, 塔尔寺人数为:24%×50=12(万人),补全条形统计图如图: (2)(万人)[来源:学§科§网] 答:估计将有万人会选择去贵德旅游;

(3)设A,B,C分别表示青海湖、塔尔寺、原子城.

由此可见,共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个[来源:]

景点的结果有3种.

∴同时选择去同一个景点的概率是.

5. (2016·湖北荆州·8分)为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:

组别 1 2 3

分数段 50≤x<60 60≤x<70 70≤x<80

频数(人)

30 45 60

频率 n

4 5

80≤x<90 90≤x<100

m 45

请根据以图表信息,解答下列问题: (1)表中m= 120 ,n= ; (2)补全频数分布直方图;

(3)全体参赛选手成绩的中位数落在第几组;

(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.

【分析】(1)根据表格可以求得全体参赛选手的人数,从而可以求得m的值,n的值; (2)根据(1)中的m的值,可以将补全频数分布直方图; (3)根据表格可以求得全体参赛选手成绩的中位数落在第几组; (4)根据表格中的数据可以求得这名选手恰好是获奖者的概率. 【解答】解:(1)由表格可得,[来源:学科网] 全体参赛的选手人数有:30÷=300, 则m=300×=120,n=60÷300=, 故答案为:120,;

(2)补全的频数分布直方图如右图所示, (3)∵35+45=75,75+60=135,135+120=255, ∴全体参赛选手成绩的中位数落在80≤x<90这一组; (4)由题意可得, ,

即这名选手恰好是获奖者的概率是.

【点评】本题考查频数分布直方图、频数分布表、中位数、概率公式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.

6. (2016·四川宜宾)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:

八年级2班参加球类活动人数统计表

项目 人数

篮球 a

足球 6

乒乓球 5

排球 7

羽毛球 6

根据图中提供的信息,解答下列问题: (1)a= 16 ,b= ;

(2)该校八年级学生共有600人,则该年级参加足球活动的人数约 90 人;

(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.

【考点】列表法与树状图法;用样本估计总体;扇形统计图. 【分析】(1)首先求得总人数,然后根据百分比的定义求解; (2)利用总数乘以对应的百分比即可求解; (3)利用列举法,根据概率公式即可求解. 【解答】解:(1)a=5÷%×40%=16,5÷%=7÷b%, ∴b=,

故答案为:16,;

(2)600×[6÷(5÷%)]=90(人), 故答案为:90;

搜索更多关于: 中考数学专题复习五:统计与概率 的文档
中考数学专题复习五:统计与概率.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c176am0v4e79mzf00wrvr0a0pl1szli00hf8_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top