第一范文网 - 专业文章范例文档资料分享平台

2016年春季新版华东师大版八年级数学下学期18.2、平行四边形的判定教案6

来源:用户分享 时间:2025/8/8 20:22:22 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

3.培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力;

教学重点:理解掌握“对角线互相平分的四边形是平行四边形,两组对角分别相等的四边形是平行四边形”这一判定定理。

教学难点:判定定理的证明方法及运用。 教学过程: 一.复习导入

1.用定义法证明一个四边形是平行四边形时,要什么条件? 2.用所学的判定方法一判定一个四边形的平行四边形的条件是什么? 3.平行四边形的对角线互相平分的逆命题如何表达?是否是真命题? 二、新课讲解:

设问:“对角线互相平分的四边形是平行四边形。”这一命题的前提什么?结论又是什么? 活动:用事先准备好的纸条按课本探究方法做,让学生判定这个四边形是否是平行四边形。

判定方法三:对角线互相平分的四边形是平行四边形。 这个方法的前提是什么?结论又是什么?

已知:如图:在四边形ABCD中,AC、BD相交于O,OA=OC,OB=OD。 求证:四边形ABCD是平行四边形。

分析:证明这个四边形是平行四边形的方法有:(1)两组对边分别相等;(2)平行四边形的定义:两组对边分别平行。(较简单的)

板书证过程。

小结:由刚才证明可得,只要有对角线互相 平分,可判定这个四边形是平行四边形。

几何语言表达:∵OA=OC, OB= OD ∴四边形ABCD是平行四边形 例题讲 解:课本P96例3。

分析:由题意可得OB=OD,再由OA=OF,AE=AF,可得OE=OF。可证四边形EBFD是平行四边形。

设问:若是两组对角分别相等的四边形,是不是平行四边形?前提是什么?结论是什么?

A B 已知:在四边形ABCD中,∠A =∠C

∠B=∠D。 D C 求证:四边形ABCD是平行四边形(让学生板书,然后小结)

练习:延长三角形ABC的中线BD至E, 使DE=BD,连结AE、CE,如图,

求证:∠BAE=∠BCE。

证明方法:由对角线互相平分可证四边形ABCE为平行四边形,可得∠BAE=∠BCE。 本课小结: 目前,我们研究平行四边形的哪些性质和判定:

平行四边形的性质:对边平行;对边相等;对角线互相平分;夹在平行线间的平行线段相等;对角相等;邻角互补;

平行四边形的判定:两组对边平行;两组对边相等;两组对角相等;对角线互相平分的四边形;

作业布置: 1、熟记判定定理; 2.课本作业

2016年春季新版华东师大版八年级数学下学期18.2、平行四边形的判定教案6.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c176zh1g8mv3z01x0bvw21wxgu8k84a00nek_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top