第一范文网 - 专业文章范例文档资料分享平台

小升初数学牛吃草问题解题思路和技巧

来源:用户分享 时间:2025/10/11 5:18:53 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2019小升初数学牛吃草问题解题思路和技巧

牛吃草问题是小学五年级的内容,学过的同学都知道这是一类比较复杂的应用题,下面为大家分享小升初数学牛吃草问题解题思路和技巧,供大家参考!

一、解决此类问题,孩子必须弄个清楚几个不变量: 1、草的增长速度不变 2、草场原有草的量不变 。

草的总量由两部分组成,分别为:牧场原有草和新长出来的草。新长出来草的数量随着天数在变而变。 因此孩子要弄清楚三个量的关系:

第一:草的均匀变化速度(是均匀生长还是均匀减少) 第二:求出原有草量

第三:题意让我们求什么(时间、牛头数)。注意问题的变形:如果题目为抽水机问题的话,会让求需要多少台抽水机 二、解题基本思路

1、先求出草的均匀变化速度,再求原有草量。

2、在求出“每天新增长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。

3、已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。

4、根据(“原有草量”+若干天里新生草量)÷天数”,求出

第 1 页

只数

三、解题基本公式

解决牛吃草问题常用到的四个基本公式分别为:

1、草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数) 2、原有草量=牛头数×吃的天数-草的生长速度×吃的天数 3、吃的天数=原有草量÷(牛头数-草的生长速度) 4、牛头数=原有草量÷吃的天数+草的生长速度 四、下面举个例子

例题:有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。

一般方法:先假设1头牛1天所吃的牧草为1,那么就有: (1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。)

(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。)

(3)1天新长的草为:(207-162)÷(9-6)=15 (4)牧场上原有的草为:27×6-15×6=72

(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天) 所以养21头牛,12天才能把牧场上的草吃尽

第 2 页

公式解法:

(1)草的生长速度=(207-162)÷(9-6)=15 (2)牧场上原有草=(27-15)×6=72

再把题目中的21头牛分成两部分,一部分15头牛去吃新长的草(因为新长的草每天长15份,刚好可供15头牛吃,剩下(21-15=6)头牛吃原有草:72÷(21-15)=72÷6=12(天))所以养21头牛,12天才能把牧场上的草吃完。 方程解答:

设草的生长速度为每天x份,利用牧场上的原有草是不变的列方程,则有 27×6-6x =23×9-9x 解出x=15份

再设21头牛,需要x天吃完,同样是根据原有草不变的量来列方程:

27×6-6×15 =23×9-9×15=(21-15)x 解出x=12(天)

所以养21头牛。12天可以吃完所有的草。

以上就是我们为大家分享的小升初数学牛吃草问题解题思路和技巧,希望同学们一定要每天坚持练习数学题。

第 3 页

小升初数学牛吃草问题解题思路和技巧.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c17kxe6zly16rgfk15sw18xzko02xvg00fv8_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top