_._
河南省信阳市潢川县中考数学一模试卷
一.选择题(共10小题,满分30分,每小题3分) 1.若实数a、b互为相反数,则下列等式中成立的是( ) A.a﹣b=0
B.a+b=0
C.ab=1
D.ab=﹣1
2.为庆祝首个“中国农民丰收节”,十渡镇西河村举办“西河稻作文化节”活动.西河水稻种植历史悠久,因“色白粒粗,味极香美,七煮不烂”而享誉京城.已知每粒稻谷重约0.000035千克,将0.000035用科学记数法表示应为( ) A.35×10﹣6
B.3.5×10﹣6
C.3.5×10﹣5
D.0.35×10﹣4
3.如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是( )
A.200 cm2 B.600 cm2 C.100πcm2 D.200πcm2
4.郑州某中学在备考 2018 河南中考体育的过程中抽取该校九年级 20 名男生进 行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示: 成绩(单位:米)
人数
2.10 2
2.20 3
2.25 2
2.30 4
2.35 5
2.40 2
2.45 1
2.50 1
则下列叙述正确的是( ) A.这些运动员成绩的众数是 5 B.这些运动员成绩的中位数是 2.30 C.这些运动员的平均成绩是 2.25 D.这些运动员成绩的方差是 0.072 5 5.下列各式中与A.
是同类二次根式的是( )
B.
C.
D.
6.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为( )
_._
_._
A.﹣4
7.若关于x的不等式组A.a≤﹣3
B.4 C.﹣2 D.2
无解,则a的取值范围是( )
B.a<﹣3
C.a>3
D.a≥3
8.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是( ) A.无实数根 B.有两个正根
C.有两个根,且都大于﹣3m D.有两个根,其中一根大于﹣m
9.如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=I,FD=2,则G点的坐标为( )
A.(,) B.(,) C.(,) D.(,)
10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )
A. B.
_._
_._
C. D.
二.填空题(共5小题,满分15分,每小题3分) 11.计算: ??﹣(
÷
= ; = ;?? +2)2015×(
﹣2)2014= .
12.如图将一直角三角板的直角顶点放置在两边互相平行的纸条的边上,若∠1=35°,则∠2的大小为 度.
13.甲、乙、丙三名学生各自随机选择到A、B两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为 .
14.如图,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O的半径为2,则圆中阴影部分的面积为 .
15.如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EF∥BC,分别交BD、CD于G、F两点.若点P、Q分别为DG、CE的中点,则PQ的长为 .
三.解答题(共8小题,满分75分) 16.先化简
÷
,然后从﹣1,0,2中选一个合适的x的值,代入求值.
17.数学课上学习了圆周角的概念和性质:“顶点在圆上,两边与圆相交”,“同弧所对的圆周角相等”,小明在课后继续对圆外角和圆内角进行了探究. 下面是他的探究过程,请补充完整: 定义概念:
顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M
_._
_._
为所对的一个圆外角.
所对的一个圆内角;
(1)请在图2中画出提出猜想
(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角 这条弧所对的圆周角;一条弧所对的圆内角 这条弧所对的圆周角;(填“大于”、“等于”或“小于”) 推理证明:
(3)利用图1或图2,在以上两个猜想中任选一个进行证明; 问题解决
经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.
(4)如图3,F,H是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)
18.在读书月活动中学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就”我最喜爱的课外读物”从文学、艺术、科普和其他四个类別进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题: (1)本次调查中,一共调查了 名同学; (2)条形统计图中m= ,n= ;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是 度;
(4)学校计划购买深外读物8000册,请根据样本数据,估计学校购买其他类读物多少册比较合理? 19.如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,E在同一直线上).(cos80°≈0.018,sin80°≈0.98,
≈1.414)
(1)此时小强头部E点与地面DK相距多少?
_._
_._
(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?
20.已知反比例函数的图象过点A(﹣2,2). (1)求函数的解析式.y随x的增大而如何变化? (2)点B(4,﹣2),C(3,(3)画出这个函数的图象.
)和D(
)哪些点在图象上?
21.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元. (1)该物流公司5月份运输两种货物各多少吨?
(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?
22.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点. (1)观察猜想:
图1中,线段PM与PN的数量关系是 ,位置关系是 ; (2)探究证明:
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由; (3)拓展延伸:
_._
相关推荐: