对顶角的性质,(4)垂直平分线的性质等.本题借助实际问题场景考查了学生的几何基本作图能力,是一道好题.题目篇幅较长,需要仔细阅读,理解题意,正确作答. 13、(2013?巴中)△ABC在平面直角坐标系xOy中的位置如图所示. (1)作△ABC关于点C成中心对称的△A1B1C1.
(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.
(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)
考点: 作图-旋转变换;轴对称-最短路线问题;作图-平移变换. 分析: (1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象; (2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2; (3)作出A1的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可. 解答: 解;(1)如图所示: (2)如图所示: (3)如图所示:作出A1的对称点A′,连接A′C2,交x轴于点P, 可得P点坐标为:(,0). 点评: 此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求求最小值问题是考试重点,同学们应重点掌握. 14、(2013?宁夏)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)
(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1
(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.
考点: 作图-位似变换;作图-旋转变换.3718684 分析: (1)由A(﹣1,2),B(﹣3,4)C(﹣2,6),可画出△ABC,然后由旋转的性质,即可画出△A1B1C1; (2)由位似三角形的性质,即可画出△A2B2C2. 解答: 解:如图:(1)△A1B1C1 即为所求; (2)△A2B2C2 即为所求. 点评: 此题考查了位似变换的性质与旋转的性质.此题难度不大,注意掌握数形结合思想的应用. 15、(2013鞍山)如图,已知线段a及∠O,只用直尺和圆规,求做△ABC,使BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法)
考点:作图—复杂作图.
分析:先作一个角等于已知角,即∠MBN=∠O,在边BN上截取BC=a,以射线CB为一边,C为顶点,作∠PCB=2∠O,CP交BM于点A,△ABC即为所求.
解答:解:如图所示:.
点评:本题主要考查了基本作图,关键是掌握作一个角等于已知角的基本作图方法. 16、(2013?苏州)如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.
(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是 △DFG或△DHF (只需要填一个三角形)
(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).
考点: 作图—应用与设计作图;列表法与树状图法.3718684 分析: (1)根据格点之间的距离得出△ABC的面积进而得出三角形中与△ABC不全等但面积相等的三角形; (2)利用树状图得出所有的结果,进而根据概率公式求出即可. 解答: 解:(1)∵△ABC的面积为:×3×4=6, 只有△DFG或△DHF的面积也为6且不与△ABC全等, ∴与△ABC不全等但面积相等的三角形是:△DFG或△DHF; (2)画树状图得出: 由树状图可知共有6种可能的结果,其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF, 故所画三角形与△ABC面积相等的概率P==, 答:所画三角形与△ABC面积相等的概率为. 故答案为:△DFG或△DHF. 点评: 此题主要考查了三角形面积求法以及树状图法求概率,根据已知得出三角形面积是解题关键. 17、(2013?张家界)如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C1作轴反射得到△A2B2C2.
考点: 作图-旋转变换;作图-轴对称变换.3718684 分析: △ABC绕A点逆时针旋转90°得到△A1B1C1,△A1B1C1沿直线B1C1作轴反射得出△A2B2C2即可. 解答: 解:如图所示:
相关推荐: