六年级数学上册易错题难题试卷含详细答案
一、培优题易错题
1.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.
【答案】2;6
【解析】【解答】根据题意知,x<4且x≠3,则x=2或x=1, ∵x前面的数要比x小,∴x=2,
∵每一行从左到右、每一列从上到下分别依次增大,
∴9只能填在右下角,5只能填右上角或左下角,5之后与之相邻的空格可填6、7、8任意一个,余下的两个数字按从小到大只有一种方法, ∴共有2×3=6种结果, 故答案为:2,6
【分析】根据题意得到x=2或x=1,由每一行从左到右、每一列从上到下分别依次增大,得到x只能=2,9只能填在右下角,5只能填右上角或左下角,得到结果.
2.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.
(1)求前4个台阶上数的和是多少? (2)求第5个台阶上的数 是多少? (3)应用 求从下到上前31个台阶上数的和.
发现 试用含k(k为正整数)的式子表示出数“1”所在的台阶数. 【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3
(2)解:由题意得-2+1+9+x=3,
解得:x=-5,
则第5个台阶上的数x是-5
(3)解:应用:由题意知台阶上的数字是每4个一循环, ∵31÷4=7…3, ∴7×3+1-2-5=15,
即从下到上前31个台阶上数的和为15; 发现:数“1”所在的台阶数为4k-1
【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.
3.已知:如图,这是一种数值转换机的运算程序.
(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为;若第1次输入的数为12,则第5次输出的数为________ . (2)若输入的数为5,求第2016次输出的数是多少.
(3)是否存在输入的数x , 使第3次输出的数是x?若存在,求出所有x的值;若不存在,请说明理由. 【答案】(1)4、6
(2)解:5+3=8,8× =4,4× =2,2× =1,1+3=4,
∴若输入的数为5,则每次输出的数分别是8、4、2、1、4、2、1,…, (2016?1)÷3=2015÷3=671…2 ∴第2016次输出的数是2
(3)解:当x为奇数时,有 (x+3)+3=x,解得x=9(舍去), × (x+3)=x,解得x=1,
当x为偶数时,有 × × x=x,解得x=0, × x+3=x,解得x=4, ×( x+3)=x,解得x=2,
综上所述,x=0或1或2或4 【解析】【解答】解:(1)∵1+3=4,
∴第1次输出的数为1,则第2次输出的数为4. ×12=6,6× =3,3+3=6,6× =3,3+3=6, ∴第1次输入的数为12,则第5次输出的数为6.
【分析】(1)根据运算程序得到第1次输出的数为1,第2次输出的数为3+1,第1次输入的数为12,则第5次输出的数(12÷2÷2+3)÷2+3;(2)根据题意由输入的数为5,每次输出的数分别是8、4、2、1、4、2、1···,得到3次一循环,求出第2016次输出的数;(3)根据运算程序得到当x为奇数时和为偶数时,求出所有x的值.
4.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)
(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是________数(填“无理”或“有理”),这个数是________;
(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是________; (3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3
①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远? ②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少? 【答案】(1)无理;﹣2π (2)4π或﹣4π
(3)解:①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,
∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远; ②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13, ∴13×2π×1=26π,
∴A点运动的路程共有26π;
∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3, (﹣3)×2π=﹣6π,
∴此时点A所表示的数是:﹣6π
【解析】【解答】解:(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣2π;
故答案为:无理,﹣2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;
故答案为:4π或﹣4π;
【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.
5.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6
(1)收工时,检修小组在A地的哪一边,距A地多远?
(2)若汽车每千米耗油3升,已知汽车出发时油箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?
【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km), 答:检修小组在A地东边,距A地19千米
(2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3 =65×3=195(升),∵195>180, ∴收工前需要中途加油, 195-180=15(升), 答:应加15升.
【解析】【分析】(1)先求出这组数的和,如为正则在A的东边,为负则在A的西边,为0则在A处;
(2)先求出这组数的绝对值的和与3的乘积,再与180比较,若大于180就需要中途加油,否则不用.
6. 、 、 三瓶盐水的浓度分别为
、
、
,它们混合后得到
克浓度为
的盐水.如果 瓶盐水比 瓶盐水多 克,那么 瓶盐水有多少克?
【答案】 解:设C瓶盐水有x克,则B瓶盐水为(x+30)克,A瓶盐水为100-(x+x+30)=70-2x克。
(70-2x)×20%+(x+30)×18%+16%x=100×18.8% 14-0.4x+0.18x+5.4+0.16x=18.8 0.06x=19.4-18.8
x=0.6÷0.06 x=10 70-2×10=50(克) 答:A瓶盐水有50克。
【解析】【分析】设C瓶盐水有x克,则B瓶盐水为(x+30)克,A瓶盐水为100-(x+x+30)=70-2x克。等量关系:A瓶中盐的重量+B瓶中盐的重量+C瓶中盐的重量=混合后盐的总重量。根据等量关系列方程求出x的值,进而求出A瓶盐水的重量。
7.一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,
相关推荐: