精品文档
由题意得f?m?3 即2m2m?1?2m?1?3 解得m??32,0U0,32 综上,m的取值范围是?32,32.
10.解:(Ⅰ)Qf(x)?t(x?t)?t?t?1(x?R,t?0),
23??3???????当x??t时,f(x)取最小值f(?t)??t3?t?1,即h(t)??t3?t?1.
(Ⅱ)令g(t)?h(t)?(?2t?m)??t?3t?1?m, 由g?(t)??3t?3?0得t?1,t??1(不合题意,舍去). 当t变化时g?(t),g(t)的变化情况如下表:
23t g?(t) g(t) (0,1) ? 递增 1 0 极大值1?m (1,2) ? 递减 ?g(t)在(0,2)内有最大值g(1)?1?m.
2)内恒成立等价于g(t)?0在(0,2)内恒成立,即等价于1?m?0, h(t)??2t?m在(0,所以m的取值范围为m?1.
11.解:(I)?f/(x)?x2?2(a?1)x?4a,?f/(3)?9?6(a?1)?4a?0,?a?31,?f(3)?,?b??4. 22/2/ (II) ?f(x)?x?2(a?1)x?4a?(x?2a)(x?2),令?f(x)?0.?x?2a,2 /当a>1时,由f(x)>0得f(x)的单调递增区间为???,2?,?2a,???;
当a=1时,f(x)?(x?2)≥0,即f(x)的单调递增区间为???,???;
/2/当a<1时,由f(x)>0得f(x)的单调递增区间为???,2a?,?2,???.
(III)由题意知a<1且f(?1)f(1)<0,解得?//1111 222212812(Ⅱ)由f(?2)?0,f(2)?2,得b?,c?1?4a.又f(x)≥x恒成立,即ax?(b?1)x?c≥0恒成立, 21111111?a>0,且??(?1)2?4a(1?4a)≤0,?(8a?1)2≤0,?a?,b?,c?.?f(x)?x2?x?. 822822211m112(III)g(x)?x2?(?)x?>在x??0,???恒成立,即x?4(1?m)x?2>0在x??0,???恒成立 8222412.(Ⅰ)由条件知f(2)≥2,f(2)≤(2?2),?f(2)?2. 精品文档 ?≥0 精品文档 ①由?<0,解得1?222 故m的取值范围为???,1?/2???2??. 2??/13.解:(Ⅰ)f(x)?ax?(3a?2)x?6?(ax?2)(x?3),?a?1,?f(x)?(x?2)(x?3),x?[0,3] ?x??0,2?,f/(x)≥0,f(x)单调递增;x??2,3?,f/(x)≤0,f(x)单调递减; ?f(x)max?f(2)? 149,f(x)min为f(0)?0和f(3)?的最小者,?f(x)min?f(0)?0. 23a3ax?(?1)x2?2x?m,?h/(x)?ax2?(a?2)x?2?(ax?2)(x?1) 32(Ⅱ)令h(x)?f(x)?g(x),则h(x)?因f(x)?g(x)总有三个不同实根,即y?h(x)的图象与x轴总有三个不同的交点, 2a26a?4<1,h(x)的极大值为h(1)?1??m,h(x)的极小值为h()??m, a6a3a22要使y?h(x)的图象与x轴总有三个不同的交点,只需h(1)>0且h()<0在a<0时恒成立,易有 aa?6a?4?6a?441323m≥(?1)|max,?m≥?1,且m≤()|,??(?)?>0,?m≤0, min2263a443a3a??1≤m≤0. ① 当a<0时, ②当0 /2h(x)的极大值为h(1)?1?a26a?4?m,h(x)的极小值为h()??m, 26a3a由题意有h(1)>0且h()<0,此时m??. 2a精品文档
相关推荐: