精 品 文 档
∴0?x?2时:f??x??0,x?2时,f??x??0,
???,单调减区间为?0,2? ∴f?x?的单调增区间为?2,a2x2?2x?a(x?0). ???上有两个极值点,f??x??2x?2??(2)函数f?x?在?0,xx2由f??x??0.得2x?2x?a?0,
当??4?8a?0,a?∴a?0. 1?1?2a1?1?2a1时,x1?x2?1,x1?,x2?,则x1?0,222由0?a?1110?x?,可得,?x2?1, 1222f?x1?x12?2x1?alnx1x12?2x1?(2x1?2x12)lnx11???1?x1??2x1lnx1, x2x2x2x1?1111+2lnx, ?2xlnx(0?x?),则h??x??1?2(x?1)x?12令h(x)?1?x?因为0?x?11112??1,又2lnx?0. .?1?x?1????(x?1)?1,?4??2(x?1)22413时,h?x?单调递减,所以h?x????ln2,即22所以h??x??0,即0?x?f?x1?3???ln2, x22故实数m的取值范围是m??3?ln2. 2
(1)设平面BPQ的一个法向量n1??x1?y1?z1?,
试 卷
精 品 文 档
??x1?2z1?0.?BP?n?0??1??1则?.令z1?1,得n1??2,1,1?,
x1?y1?2z1?0,??PQ?n1?0??2n1?PCn1PC∴PC与平面BPQ所成角的正弦值sin???11?. 6?66∴点C到平面BPQ的距离为PQ?sin??6. 6(2)设平面APQ的一个法向量n2??x2?y2?z2?,
2z2?0,??AP?n?0??2??1则?令x2?2,得n2??2,?1,0?,
x2?y2?2z2?0,??PQ?n2?0??2∴cosn1,n2?n1?n233030??,∴二面角A?PQ?B的余弦值为. 10n1n2106?5 22.解:(1)设M的焦点F1??c,0?,F2?c,0?,
?31333??PF1F2面积为?2c??3,∵P?,,∴,∴c?1, ???22222??3?3?a2?4,x2y2?2?2?1??1. 由?a,得?2∴椭圆M的方程为4b4322?b?3,??a?b?1试 卷
精 品 文 档
?x2y2?1,??222(2)设直线l的方程为y?kx?t,由?4·得?3+4k?x?8ktx?4t?12?0, 3?y?kx?t,?8kt4t2?12?x1x2?设A?x1?y2?,B?x2?y2?,则x1?x2??22. 3?4k3?4kt?x1?x2?y1y2tt2kt2k1?k2???k??k??2k??2k?2. x1x2x1x2x1x2t?33?m?2?2t22由k1?k2?mk对任意k成立,得m?2?2,∴t?,
t?3mt?在椭圆内部,∴0?t2?3,∴m?2,即m??2,+??. 又?0,
试 卷
相关推荐: