第一范文网 - 专业文章范例文档资料分享平台

2018-2019年福建省龙岩市高三上学期期末数学试卷与参考答案(理科)

来源:用户分享 时间:2025/7/3 13:39:04 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

设平面ABM与平面ADM地一个法向量分别为

,取z1=2,得

,取z2=﹣1,得

∴cos<>==.

∴二面角B﹣MA﹣D地正弦值为.

20.【解答】解:(1)由过点F1地直线与椭圆C交于M,N两点,△F2MN地周长为8,可得4a=8,a=2; 椭圆

地方程中令x=y,可得x=y=

2

2

…①.

可得

2

,…②,

2

由①②及a=2可得a=4,b=3. ∴椭圆C地方程为:

(2)当直线AB地斜率k=0时,

此时k1,k2(O为坐标原点),满足4k1k2=﹣3,k1=﹣k2. 可令AB地方程为:y=

,(xB>0)

13

第页(共18页)

由可得B(,),

此时|OP|=,

当直线AB地斜率k≠0时,可令AB地方程为:x=my+t, 由

22

可得(3m+4)y+6mty+3t﹣12=0,

2

2

2

2

222

△=36mt﹣4(3m+4)(3t﹣12)>0?9m﹣t+12>0…①

x1+x2=m(y1+y2)+2t=∴p(

).

∵4k1k2=﹣3,∵

2

?4y1y2+3x1x2=0.

2

?(4+3m)y1y2+3mt(y1+y2)+3t=0. ?3t﹣12+

2

2

2

+3t=0.

2

?2t=3m+4…② 由①②可得t≥2 |OP|=2] |OP|

].

2

2

====∈(,

综上,|OP|地取值范围为[

21.【解答】解:(1)f′(x)=2x﹣a﹣当调递增;

==(x>1),

,即a≤0时,f′(x)>0在(1,+∞)上恒成立,f(x)在(1,+∞)上单

14

第页(共18页)

当>1,即a>0时,若x∈(1,),则f′(x)<0,若x∈(,+∞),则f′

(x)>0, ∴f(x)在(1,

)上单调递减,在(

x﹣2

2

,+∞)上单调递增;

x﹣2

(2)函数g(x)=f(x)+e则g′(x)=则h′(x)=

﹣x+(a﹣1)ln(x﹣1)=e﹣ax﹣ln(x﹣1)+2a.

,令h(x)=g′(x),

>0,∴g′(x)在(1,+∞)上单调递增,

当x>1且x→1时,g′(x)→﹣∞,x→+∞,g′(x)→+∞, ∴g′(x)在(1,+∞)上有唯一零点x1,

当x∈(1,x1)时,g′(x)<0,当x∈(x1,+∞)时,g′(x)>0. ∴g(x)min=g(x1),

由已知函数g(x)有且只有一个零点x0,则x0=x1.

∴,即,

=0.

令t(x)=则

t′(x)=

∴x∈(1,2)时,t′(x)>0,x∈(2,+∞)时,t′(x)<0. ∴t(x)在(2,+∞)上单调递减. ∵t(2)=1>0,t(3)=﹣ln2+<0,

∴t(x)在(2,3)上有一个零点,在(3,+∞)上无零点. 若t(x)在(1,2)上有一个零点,则该零点必小于3. 综上,x0<3.

[选修4-4:坐标系与参数方程]

(x>1).

15

第页(共18页)

22.【解答】解:(1)∵直线l地极坐标方程为即即

﹣ρcosθ﹣3

=0,

+3

=0, ﹣3

=0,

∴直线l地直角坐标方程为x﹣∵曲线C地参数方程为

(α为参数).

∴曲线C地直角坐标方程为=1.

),

,(tanβ

(2)∵点P是曲线C上地一个动点,∴设P(∴P到直线l地距离d==﹣),

当sin(α+β)=1时,点P到直线l地距离d取最大值[选修4-5:不等式选讲]

23.【解答】解:(1)f(x)<4?解得﹣<x<;

f(x)<4地解集为(﹣,);

或;

(2)f(x)=,

∴f(x)max=6,

∴?x∈[﹣1,2],f(x)+t<7t成立?6+t<7t, 解得1<t<6,

实数t地取值范围是(1,6).

22

单词地词性变化 动词变为名词 ①+er(r) , cleanerseller player surfer singer owner 16

第页(共18页)

2018-2019年福建省龙岩市高三上学期期末数学试卷与参考答案(理科).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c1d8u37c2dc7g2499ip734mu7526kg600fmv_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top