2、网络层服务模式:虚电路、数据报:1)目的地址:开始建立时需要、每个包都需要2)错误处理:网络负责、主机负责3)流量控制:网络负责、主机负责4)拥塞控制:通信子网实现、难5)路径选择:只需在建立连接时进行一次、每个包都需要独立进行6)包顺序:按发送顺序到达、到达顺序不一定7)建立与释放连接:需要、不需要8)服务方式:面向连接、无连接9)应用领域:数据量大 实时性要求较低 可靠性要求高的网络通信、数据量少(多为突发性一个短包) 实时性要求高 可靠性要求较低的网络通信
3、IP五类地址的特点:1)A类地址:支持很少量巨型网络。范围1.0.0.0--126.0.0.0。用第一个8位位组表示网络地址,3个8位位组表示主机地址。支持224-2=16777214个不同的主机地址。2)B类地址:支持中到大型的网络。B类范围128.1.0.0到191.254.0.0。用两个8位位组表示网络号,另外两个8位位组表示主机号。支持216-2=64534个主机地址3)C类地址:支持最大量的小型网络。前三个8位位组表示网络地址,最后一个8位位组表示主机号.地址范围从192.0.1.0至223.255.254.0.可支持最大28-2=254个主机地址4)D类地址:用于在IP网络中的组播。一个组播地址是一个唯一的网络地址,它能指导报文到达预定义的IP地址组。前4位恒为1110。5)E类地址:Internet上没有可用的E类地址。E类地址的前4位恒为1,有效的地址范围从240.0.0.0至255.255.255.255。
根据互联网发展史,解释IP地址为何会如此分类?
一旦选择了IP地址的长度并决定把地址分为两部分,就必须决定每部分包含多少位。在互联网中,既有由少量的大型物理网络,但更有大量的小型物理网络。因此,设计人员必须选择一个能满足大网和小网组合的灵活的、折衷的编址方案,即将IP地址空间划分为五类:A、B、C、D、E,其中A、B、C是三个基本类,每类有不同长度的前缀和后缀。
4、IP扩充:子网掩码、可变长子网掩码、无类域间路由(CIDR)
划分子网原因:实质就是Internet的层次结构需要加第三层。在一个组织多个子网的环境中,每个子网都分别通过一个路由器的一个接口连入Internet,该组织内部子网结构细节对外面的Internet没有影响。Internet只需知哪个标准IP网络地址连接至路由器就可以。只是在含有多个子网的组织内部,一个标准二层IP地址的主机部分被细分用作标识子网。
子网基本划分方法:将任何一类(A、B、C)IP地址再细分为更小的网络号。一个被子网化的IP地址实际包含三部分:网络号、子网号和主机号。子网和主机地址是由原先IP地址的主机地址部分分割成两部分得到的,IP地址中主机地址位数越多,就能分得更多的子网和主机。
子网掩码的格式:标识网络和子网部分的bit位永远为1,剩下标识主机位置的bit位永远为0。 5、引入超网的目的:CIDR最初是针对新的C类地址提出的,即只有新分配的地址才能使用这种技术,作用是减缓了Internet路由表的增长,而对于已经存在的选路则没有任何帮助。CIDR的几个关键特性对挽救IPv4地址空间的耗尽及路由表迅速膨胀问题是非常有价值的。
6、为何IP多播地址到以太网多播地址的映射不是唯一的?由于多播组号中的高5bit在映射过程中被忽略,因此每个以太网多播地址对应的多播组是不唯一的,25=32个不同的多播组号被映射为一个以太网地址。
7、设计路由算法应考虑的技术要素:1)是路由算法所基于的性能指标,譬如选择路径最短路由,或者费用最低路由等;2)要考虑通信子网是采用虚电路还是数据报方式;3)是采用分布式路由算法,即每节点均为到达的分组选择下一步的路由,还是采用集中式路由算法,即由中央节点或始发节点来决定整个路由;4)要考虑关于网络拓扑,流量和延迟等网络信息的来源;5)确定是采用动态路由选择策略,还是静态路由选择策略。
8、独立路由选择:节点仅根据自己搜集到的有关信息作出路由选择的决定,与其它节点不交换路由选择信息,虽然不能正确确定距离本节点较远的路由选择,但还是能较好地适应网络流量和拓扑结构的变化。
集中路由选择:指所有的互联信息都由一个中心位置负责收集和维护,然后这个中心位置将信息广播给所有的网络节点,每个节点根据收到的互连信息就能各自设定自己的路由表了。
分布路由选择:意味着没有中央控制,每个节点必须独立地决定和维护自己的路由信息。 全局路由:要求每一个节点都必须获悉网络中所有连接情况以及每条链路的信息---权值、花费。 分散路由:要求每个路由仅仅知道与它相连的链路的信息-----权值、花费。
9、DV算法:优:1)距离-矢量协议简单,容易配置、维护、使用,适于小型只有少量冗余路径且无严格性能要求的网络。能自动检测和更正网络中的大多数错误。2)对于每个节点而言,在初始化时,只知道直接和它相连的节点的信息,每个节点支持一个距离-矢量路由表。是一种反复的、冗余的迭代算法。3)路由信息协议(RIP)采用的就是~。RIP使用单一的距离标准来决定一个报文要选择的最好路径。缺点:1)在一定环境下会产生路由错误。2)在收敛过程中,网络可能是脆弱的,产生不一致的路由,甚至路由环。3)收敛慢(适应变化慢)。适用:只适合小的、简单的局域网,不适合于大的、复杂的广域网。
LS算法:链路-状态路由。优:1)作为动态路由可以适合任何大小的网络。2)使用事件来驱动更新能使收敛在拓扑变化之后更快地进行。3)如果正确地设计网络,可以使更多的带宽用于路由数据流量而不是网络维护流量,使网络有更好的可扩展性。缺:1)在初始发现过程中,各路由器会在网络上进行洪泛法扩散自己的LSA,削弱网络传输真正用户数据的能力。2)对路由器的存储器和处理器能力敏感。路由器要有更大的存储容量和更快的运算速度,导致路由器价格上涨。适用:任何大小的网络,最适于大型复杂的或高度可扩展的网络。
10、路由收敛:指一旦网络拓扑或形状发生变化,网络中所有的路由器必须得到对网络拓扑新的认识,最后所有路由器重新获得一致的过程。
11、典型路由协议:路由信息协议RIP、OSPF、BGP
RIP缺陷:跳数限制;固定度量;路由表更新占用带宽严重;没有子网地址的概念;收敛慢;缺乏负载均衡
报文为何每次最多只能交换25条路由?上限25是用来保证RIP报文的总长度为20×25+4=504,小于512字节。
12、OSPF为何要在AS的基础上继续分“区”OSPF能够快速收敛的一个主要原因是它使用了“区”。 其划分机制:一个区是一些网络端系统、路由器以及传输线路的集合。每个区由一个唯一的区号定义,这个区号配置在每一个路由器内。定义了相同区号的路由器接口是这个区的一个组成部分。
13、QoS:IP QoS是网络与用户之间以及网络上互相通信的用户之间关于信息传输与共享的质的约定,是网元在一定程度上具有的满足流量及业务需求的能力。常用方法:1)综合服务/资源预留2区分服务3)多协议标记交换协议4)流量工程5)约束路由6)子网带宽管理
14、ICMP作用:专门用于发送差错报文的协议 常用的ICMP差错报文:源抑制、超时、目的不可达、重定向、参数问题
15、IP协议功能:1) 寻址和路由2) 分组和重组3)差错监测和处理
IP包为何要分片?当一个数据报的尺寸大于将发往的网络的MTU值时,路由器将数据报分成若干较小的部分,叫分片,然后再将每分片独立的进行发送。
18、ARP协议的基本作用?为使所有计算机对用于地址解析的消息在精确格式和含义上达成一致(Address Resolution Protocol)。
66666666 资源子网和通信子网的关系:通信子网是资源子网的连接纽带,是为资源子网提供传输和转发服务的,资源子网是通信子网的服务对象。
资源子网的任务:组织和存放资源;响应请求和提供资源;提出请求并获取和使用资源
7777777传输层 端到端的传输层协议程序:TCP(面向连接的传输层协议)、UDP(面向非连接的~)TCP可靠的 UDP无连接,都是端到端
2、TCP三次握手,四个过程,UDP两次
TCP--三次握手--端到端的可靠连接控制:1)用户A传送一个TPDU,设置标志位SYN=1和ACK=0,序列号是x,表明这是一个连接请求。2)用户B回送一个确认该请求及其序列号的TPDU。它的序列号为y,应答域为x+1.3)用户A对用户B的确认帧发回一个确认, TPDU中包含序列号x+1和应答域序列y+1。
释放四个步骤:1)用户A请求终止连接。2)用户B确认请求。3)用户A对用户B的确认帧发回一个确认,并终止连接。4)用户B收到确认后,也终止连接。
6、拥塞现象是指到达通信子网中某一部分的分组数量过多,使得该部分网络来不及处理,以致引起这部分乃至整个网络性能下降的现象。严重时甚至会导致网络通信业务陷入停顿,即出现死锁现象。 控制方法:开环控制和闭环控制。开环控制是在设计网络时,就考虑拥塞情况,力求在网络工作时,使其不产生拥塞,很难实现。闭环控制比较现实,其思想:1)监测网络系统在何时何处发生了拥塞;2)将拥塞的信息传送到可以采取行动的地方;3)根据拥塞消息,调整网络系统的运行,解决拥塞。
为了避免拥塞崩溃,TCP通过两种方式发现拥塞,一收到ICMP的源抑制报文;二超时包丢失,TCP把发现包丢失统统解释为网络拥塞,即TCP用包丢失来估计拥塞。
相关推荐: