优质文档
?y2?4xE?x2,?y2?,由?消去x,得
?x?my?x01设P的y2?4my?4x0?0,x0?.???16m2?16x0?0,y1?y2?4m,y1y2??4x0,
2坐标为?xP,0?,则PE??x2?xP,?y2?,PA??x1?xP,y1?,由题知PE//PA,所以
?x2?xP?y1?y2?x1?xP??0,即
2y2y1?y12y2y1y2?y1?y2?x2y1?y2x1??y1?y2?xP??,显然y1?y2?4m?0,所以
44y1y2??x0,即证xP??x0,0?,由题知?EPB为等腰直角三角形,所以kAP?1,即4y1?y2y1?y22?1,也即?1,所以y1?y2?4,??y1?y2??4y1y2?16,即
12x1?x2?y1?y22?4116m2?16x0?16,m2?1?x0,x0?1,又因为x0?,所以
2xP??x?x2x02x01?x0?1,d?00??,令
2222?x01?m1?m??6?2?2?t2?46?42??,易知在2?x0?t??1,,x?2?t,d???2t1,ft??2t??2?0?2?ttt?????6?上是减函数,所以d??,2??. 3??21. 解:(1)f'?x??x?1?a,x?0,?f'?x???a?2,???. x① 当a?2?0,即a???2,???时,f'?x??0对?x?0恒成立,f?x?在?0,??? 上单调递增,f?x?没有极值点. ②当a?2?0,即a????,?2?时,方程x2?ax?1?0有
1x2?ax?1?x?x1??x?x2??x?0?,不妨?两个不等正数解x1,x2,f'?x??x??a?xxx设0?x1?x2,则当x??0,x1?时,f'?x??0,f?x?递增,当x??x1,x2?时,
f'?x??0,f?x?递减,当x??x2,???时,f'?x??0,f?x?递增,所以x1,x2分别为f?x?的极大值点和极小值点. f?x?有两个极值点.综上所述,当a???2,???时,f?x?没有极值点,当a????,?2?时,f?x?有两个极值点.
优质文档
优质文档
ex?x2?lnx(2) (i)f?x??g?x??e?lnx?x?ax,由x?0,即a?对于?x?0xx2恒成立,设
1??xe?2x??x??ex?x2?lnx??e?x?lnxx???x??(x?0),?'?x???xx2x2ex?x?1??lnx??x?1??x?1??,
x2x?0,?当x??0,1?时,?'?x??0,??x?递减,当
x??1,???时,?'?x??0,??x?递增,???x????1??e?1,?a?e?1.
(ii)由(i)知,当a?e?1时,有f?x??g?x?,即
ex?321x?lnx?x2??e?1?x?ex?x2??e?1?x?lnx, ① 当且仅当x?122ee1ex?e?2,设??x??lnx?,?'?x???2?2,所以当x??0,e?时,xxxxx时取等号. 以下证明lnx??'?x??0,??x?递减,当x??e,???时,?'?x??0,??x?递增,
???x????e??2,?lnx?e?2, ② xe?2. x当且仅当x?e时取等号. 由于①②等号不同时成立,故有ex?x2??e?1?x?22. 解:(1)由?cos???????222,化成直角坐标??cos???sin???????22,得24?方程,得2?x?y???22,即直线l的方程为x?y?4?0,依题意,设2P?23cost,2sint?,则P到直线l的距离
???4cos?t???423cost?2sint?4????6?d???22?22cos?t??,当
?6?22t??6?2k?,即t?2k???6,k?Z时,d?max?42,故点P到直线l的距离的最大值
为42. (2)因为曲线C上的所有点均在直线l的右下方,??t?R,acost?2sint?4?0恒成立,
优质文档
优质文档
即
a2?4cos?t????4(其中tan??22)恒成立,?a?4?4,又a?0,解得a0?a?23,故a取值范围为?0,23?.
23. 解:(1)
x?2m?x?x?2m?x?2m,要使x?2m?x?4恒成立,则m?2,
m?N?,?m?1.
解得?2?m?2.又(2)
???0,1?,???0,1?,?f????f????2?2??2?2??3,即
?1414???4????41??????,???2?????????2?5????2?5?2???18,当
2??????????????且仅当
4????4111,即??,??时取等号,故??18.
???36优质文档
相关推荐: