3.集体交流。
(1)组:正方体有6个面,6个面大小都相等,6个面都是正方形。 (2)组:正方体有12条棱,正方体的12条棱的长度相等。
(3)组:正方体有8个顶点。请学生到讲台前,手指正方体模型,按“面、棱、顶点”的特征有序地数一数,摸一摸,其他同学观察思考。
教师问:怎样判断一个图形是不是正方体? 4.教学正方体和长方体的联系与区别:
老师出示一个正方体教具。请学生讨论:它是不是一个长方体? 学生充分讨论,集体交换意见。
学生甲组:这个物体的六个面都是正方形,它不是长方体。
学生乙组:长方体6个面是对面的面积相等,而这个物体是6个面的面积相等,所以我们也认为它不是长方体。
学生丙组:我们组有不同意见,因为我们认为它的6个面虽然都是正方形,不是长方形,但是正方形是特殊的长方形,它的12条棱也包括每组4条棱长度相等;6个面面积相等,也包括了相对的面面积相等这些条件,所以我们认为它是长方体。
教师根据学生的发言进行总结:正方体是特殊的长方体,长方体中包含着正方体,用集合圈表示为:
教师:我们把长、宽、高都相等的长方体叫做正方体或者叫立方体。 三、课堂作业
1.教材第20页的“做一做”。
2.教材第21~22练习五的第4、5、8、9题。 四、课堂小结
今天这节课,大家有什么收获?(学生畅所欲言谈收获,教师将学生的发言进行总结) 五、课后作业
完成练习册p15第3题。 板书设计:
第2课时正方体
有6个面,都是正方形,每个面的面积相等。 有12条棱,每条棱长度相等。有8个顶点。 教学反思
2、长方体和正方体的表面积
第1课时 长方体和正方体的表面积(1)
总第 12 课时
21
【教学内容】
长方体和正方体的表面积概念,长方体和正方体表面积的计算(教材第24页例1、例2,以及第25~26页练习六第1、2、3、4、6、7题)。 【教学目标】
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。 3.培养学生分析能力,发展学生的空间概念。 【重点难点】
掌握长方体和正方体表面积的计算方法。 【教学准备】
长方体、正方体纸盒,剪刀,投影仪。 【教学过程】 一、复习导入
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。 二、新课讲授
1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积? (2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。 (4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和 0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)
方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2) 方法三:(上面的面积+前面的面积+左面的面积)×2
2(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m)
(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?
22
(6)请同学们尝试自己解答教材第24页例2, 集体交流算法,请学生说说你是怎样解答计算正方体表面积的。 三、课堂作业
1. 完成教材第23页“做一做”。 2.完成教材第24页“做一做”。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。 四、课堂小结
今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗? 五、课后作业
完成练习册中本课时练习。 板书设计
第1课时长方体和正方体的表面积(1)
长方体的表面积=(长×宽+长×高+宽×高) ×2 正方体的表面积=边长×边长×6 教学反思
第2课时 长方体和正方体的表面积(2)
总第 13 课时
【教学内容】
求一些不是完整六个面的长方体、正方体的表面积,(教材25页第5题、教材第26页第9、10题)。 【教学目标】
1.利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。
2.通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲。 【重点难点】
能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。 【教学过程】 一、复习导入
师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)
1.做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?
2.一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。
23
二、新课讲授
1.教材25页第5题
(1)一个长方体的饼干盒,长10 cm、宽6 cm、高12 cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?
(2)学生读题,看图,理解题意。
(3) “上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算) (4)学生尝试独立解答。 (5)集体交流反馈。 方法一:10×12×2+6×12×2=240+144=384 (cm2) 方法二:(10×12+6×12)×2=(120+72)×2=384 (cm2) 答:这张商标纸的面积至少需要384平方厘米。 2.教材26页第8题
(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)
(2)学生读题,看图,理解题意。
(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和) (4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。 3×3×5=9×5=45 (dm2)
答:制作这个鱼缸时至少需要玻璃45平方分米。 三、课堂作业
完成教材第26页练习六第9、10题。 四、课堂小结
提问:同学们,这节课我们学习了求一些不是完整六个面的长方体、正方体的表面积,这节课你有什么收获? 五、课后作业
完成练习册p19第6、7题。 板书设计:
第2课时 长方体和正方体的表面积(2)
一个长方体的饼干盒,长10cm、宽6cm、高12cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?
方法一:10×12×2+6×12×2 =240+144 =384 (cm2) 方法二:(10×12+6×12)×2 =(120+72)×2
2
=384 (cm)
答:这张商标纸的面积至少需要384平方厘米。
一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?
3×3×5 =9×5 =45 (dm2)
答:制作这个鱼缸时至少需要玻璃45平方分米。
24
教学反思
第3课时 长方体和正方体的表面积(3)
总第 14 课时
【教学内容】
长方体和正方体的表面积练习(教材26页第11~13题)。 【教学目标】
1.使学生熟练地掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。 2.培养学生分析、解决问题的能力,以及良好的思维品质。 【重点难点】
掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。 【教学准备】:课件 【教学过程】 一、复习导入
1.如果告诉了长方体的长、宽、高,怎样求它的表面积? 2. 如果要求正方体的表面积,需要知道什么?怎样求?
3. 一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方米?表面积是多少平方米?
4.一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米? 二、课堂作业
完成教材第26页第11~13题。 1.第11题
(1)分析题目的已知条件和问题。
(2)粉刷教室要粉刷几个面?哪一个面不要粉刷?还要注意什么? (3)列式解答: 4×[8×6+(8×3+6×3)×2-11.4] =4×[48+42×2-11.4] =4×120.6=482.4(元)
答:粉刷这个教室需要花费482.4元。 2.第12题
这是一道计算组合图形的表面积的题,提醒学生:两个图形重叠部分的面积不能算在表面积里。
分析:前后面的面积是相等的,就是把3个长方体前面的面相加即可。 左右两面也相等,实际上就是求中间这个长方体左右的两个面即可。 解:涂黄油漆[40×(65-10)+40×65+40×40]×2 =(2200+2600+1600)×2=12800(cm2) 涂红油漆40×65×2+40×40×3=5200+4800=10000(cm2)
答:涂黄油漆的总面积为12800cm2,涂红油漆的面积为10000cm2。 3.第13题
25
相关推荐: