第一范文网 - 专业文章范例文档资料分享平台

2020-2021学年辽宁省大连市中考数学二模试卷及答案解析

来源:用户分享 时间:2025/7/31 0:51:22 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

间=,以此作为等量关系可列方程求解.

【解答】解:设采用新工艺前每时加工x个零件.

﹣10=解得:x=50,

经检验:x=50是原分式方程的解,且符合题意, 答:采用新工艺之前每小时加工50个.

22.某商场销售一种商品,在一段时间内,该商品的销售量y(千克)与每千克的销售价x(元)满足一次函数关系(如图所示),其中30≤x≤80. (1)求y关于x的函数解析式;

(2)若该种商品每千克的成本为30元,当每千克的销售价为多少元时,获得的利润为600元?

【考点】AD:一元二次方程的应用;FH:一次函数的应用.

【分析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于k、b的关系式,求出k、b的值即可;

(2)根据每天可获得600元的利润列出方程,解方程即可.

【解答】解:(1)当30≤x≤80时,设y与x之间的函数关系式为y=kx+b(k≠0).

由所给函数图象可知,,

解得,

故y与x的函数关系式为y=﹣x+100;

(2)∵y=﹣x+100,依题意得 ∴(x﹣30)(﹣x+100)=600, x﹣280x+18700=0, 解得x1=40,x2=90. ∵30≤x≤80, ∴取x=40.

答:当每千克的销售价为40元时,获得的利润为600元.

23.如图,四边形ABCD是⊙O的内接四边形,∠ABD=∠CBD=60°,AC与BD相交于点E,过点C作⊙O的切线,与AB的延长线相交于点F. (1)判断△ACD的形状,并加以证明 (2)若CF=2,DE=4,求弦CD的长.

2

【考点】MC:切线的性质;M6:圆内接四边形的性质. 【分析】(1)根据圆周角定理即可得到结论;

(2)根据全等三角形的性质得到AF=DE=4,CE=CF=2,根据切线的性质得到FC=FB?AF,求得FB=1

2

根据相似三角形的性质即可得到结论; 【解答】解:(1)∵∠ABD=∠CBD=60°, ∴∠CAD=∠CBD=60°,∠ACD=∠ABD=60°, ∴△ACD是等边三角形;

(2)在△ACF与△DCE中,

∴△ACF≌△DCE, ∴AF=DE=4,CE=CF=2, ∵CF是⊙O的切线, ∴FC=FB?AF,

2

∴2=FB?4,

2

∴FB=1

∴AB=AF﹣BF=4﹣1=3,

∵∠ABE=∠DCE,∠BAE=∠CDE, ∴△∠ABE∽∠DCE, ∴

=

=

=

∴=,

解得:CD=3.

五、解答题(本题共35分)

24.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC∥x轴,∠OBC=45°. (1)求点C的坐标;

(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.

【考点】FI:一次函数综合题.

【分析】(1)作CM⊥x轴于点M,利用等腰直角三角形和矩形的性质可求得OM和CM的长,可求得C点坐标;

(2)①当E在线段OB上时,连接OD,利用条件可证得△DOE∽△EBF,利用相似三角形的性质可得到m与n之间的关系;②当点E在线段BO的延长线上时,同样可证得△DOE∽△EBF,可得到m与n之间的关系. 【解答】解:

(1)作CM⊥x轴于点M,如图1,

2020-2021学年辽宁省大连市中考数学二模试卷及答案解析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c1hy0y3v7la2p7v43zg0p6rgfk15sw100hcg_6.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top