精 品 文 档
黔南州2015-2016学年高二下学期期末考试
数学(理)试题
本试卷分第I卷(选择题)和第II卷(非选择题)两部分,总分150分,考试时间120分
一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是
符合题目要求的,请将正确选项涂在答题卡上)
1. 设集合A={x|0≤x≤6},集合B={x|x2+2x-8≤0},则AB=() A. [0,2] B. [-4,2] C. [0,6] D. [-4,6]
2. i是虚数单位,若复数z满足zi=-1+i,则复数z的实部与虚部的和是() A. 0 B. 1 C. 2 D. 3
3. 都匀市2015年各月的平均气温(°C)数据的茎叶图如下:
则这组数据的中位数是() A. 19 B. 20 C. 21. 5 D. 23
4. 设α、β是两个不同的平面,直线m⊥α,则“m⊥β”是“α∥β”的() A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件
5. 已知向a=(1,2),b=(x,-4),若ab,则x=() A. 4 B. ﹣4 C. 2 D. ﹣2 6. 在等差数列?an?中,若
()
A. 8 B. 10 C. 12 D. 15
7. 按照右图的程序运行,已知输入x的值为2+log23,则输出的值为() A. 7 B. 11 C. 12 D. 24
试 卷
精 品 文 档
8. 将函数f(x)=cos(x??6)图像上所有的点的横坐标缩短为原来的
1,纵坐标不变,得2到图象 g(x),则函数g(x)的一个递减区间为()
9. 若函数y=x+
1+t(t>0)有两个零点,则实数 t的取值范围是( ) 2x
10. 祖暅原理:“幂势既同,则积不容异”. “幂”是截面积,“势”是几何体的高,意思是两个同高的几何体,如在等高处截面的面积恒相等,则体积相等. 已知某不规则几何体与如图所示的几何体满足“幂势同”,则该不规则几何体的体积为()
11. 已知a是常数,函数f(x)=
x
图所示,则函数g(x)=|a-2|的图像可能是()
+2的导函数
的图像如右
试 卷
精 品 文 档
x2y212. 已知F1、F2分别是双曲线2?2?1(a?0,b?0)的左右焦点,A为双曲线的右顶点,
ab线段
AF2的垂直平分线交双曲线与P,且|PF1|=3|PF2|,则该双曲线的离心率是()
二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).
13. 已知x,y满足,则z=y-x的最大值为
14. 在
5
的展开式中,x的系数为
15. 已知,若从[0,10]中任取一个数x,则使|x-1|≤a的概率为
16. 设定义在R上的偶函数y=f(x),满足对任意x沂砸都有f(t)=f(2-t)且x?(0,1]时,
,用“<”表示a,b,c 的大小关
系
三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17。(本小题满分10分)
在△ABC中,内角A,B,C的对边为a,b,c,已知2ccosA+a=2b。 (1)求角C的值。
(2)若c=2,且△ABC的面积为3,求a,b。
18. (本小题满分12分)
已知等差数列?an?的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列. (1)求数列?an?的通项公式;
试 卷
精 品 文 档
?bn?(2)设??是首项为1,公比为2的等比数列,求数列?bn?前n项和Tn.
?an?
19. (本小题满分12分)
三棱锥P-ABC中,PC⊥平面ABC,PC=3,∠ACB=的点,
且 CD=DE=2 ,CE=2EB=2。 (1)证明:DE⊥平面PCD;
(2)求二面角A-PD-C的余弦值。
? ,点D,E分别为线段AB,BC上2
20. (本小题满分12分)某单位举行联欢活动,每名职工均有一次抽奖机会,每次抽奖都是从
甲箱和乙箱中各随机摸取1个球,已知甲箱中装有3个红球,5个绿球,乙箱中装有3个红球,
3个绿球,2个黄球. 在摸出的2个球中,若都是红球,则获得一等奖曰若都是绿球,则获得二等
试 卷
相关推荐: