专题11 巧解二元一次方程组
专题解读】 解二元一次方程组的基本思路是“消元”,常用的解法有两种:“代入法”与“加减法”,这两种解法的基本思想是通过消元把二元一次方程组化为一元一次方程.对于一些特殊形式的方程组,如果我们能够通过观察发现其结构特征与规律,比如其未知数的系数、常数项的特征,那么我们就可采用灵活、巧妙的方式进行变式,从而最终达到消元的目的.
思维索引
??97x?79y?212, ①?3x?5?x?y??36, ①例1.解方程组:(1)? (2)?
79x?97y?140; ②3y?4x?y?36; ②?????
?2x?3y2x?3y?x??7, ①????4?53例2.解方程组:(1)? (2)?2x?3y2x?3y??x???8; ②??2?3?7y?12, ①7
y?12; ②5
?x?y?a例3.(1)当a取什么值时,方程组?的解是正数?
5x?3y?31??x?ky?k(2)要使方程组?的解都是整数,k应取哪些整数值?
x?2y?1? ()
素养提升
1.若x?2y?3z?10,4x?3y?2z?15,则x?y?z的值为( ) A.2 B.3 C.4 D.5
?3x?y?2z?3 ①?2.解方程组?2x?y?4z?11 ②,若要使运算简便,消元的方法应选取( )
?7x?y?5z?1 ③?A.先消去x B.先消去y C.先消去z D.以上说法都可 3.若A.
abc??,且a?b?c?12, 则2a?3b?c等于( ) 2373 B.2 C.4 D.12 7?2017x?2018y?2016 ①234.若?,则?x?y???x?y?的值是( )
?2018x?2017y?2019 ②A.28 B.0 C.10 D.19
5.今有上等谷子三捆,中等谷子二捆,下等谷子一捆,共得谷子三十九斗;如果有上等谷子二捆,中等谷子三捆,下等谷子一捆,共得谷子三十六斗:上等谷子一捆,中等谷子二捆,下等谷子三捆,共得谷子三十三斗,则上、中、下三等谷子一捆各有斗数是( )
A.3,3,4 B.8,5,5 C.7,9,12 D.12,13,14
6.已知代数式ax2?bx?c,当x??1时,其值为4;当x?1时,其值为8;当x?2时,其值为25;则当x?3时,其值为 .
7.一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后他们的年龄和是子女6年后年龄和的3倍,这对夫妇共有子女 个.
??ax??b?2?y?1 ①8.在解关于x、y的方程组?时,可以用①?2?②消去未知数x,也可用
???2b?1?x?ay?4 ②①?4?②?3消去未知数y.则a= ,b= .
9.当x??2,y?1,或x??1,y?2,或x?0,y?1时,等式x2?y2?Dx?Ey?F?0都成立,则D= 、E= 、F=
10.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成.如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排 名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.
?361x?463y??102 ①11.解方程组:(1)?
463x?361y?102 ②??7x?38y?90 ①(2)?
23x?67y?180 ②? ()
12.拓展创新:
?2x?3y?4z?0 ①x?y?z(1)已知方程组?,求的值。
x?y?z3x?4y?5z?0 ②?
(2)根据要求,解答下列问题.
(a)解下列方程组(直接写出方程组的解即可): ?x?2y?3①?的解为 ;②2x?y?3??3x?2y?10的解为 ; ?2x?3y?10??2x?y?4③?的解为 ;
?x?2y?4?(b)以上每个方程组的解中,x值与y值的大小关系为 ; (c)请你构造一个具有以上外形特征的方程组,并直接写出它的解.
?3x?2y?z?6?ax?by?2cz?2??13.方程组?6x?y?2z??2与关于x、y、z的方程?2ax?3by?4cz??1的解相同,求a,b,c的值.
?6x?2y?5z?3?3ax?3by?5cz?1?? ()
相关推荐: