第一范文网 - 专业文章范例文档资料分享平台

变电所无功补偿装置设计技术规定

来源:用户分享 时间:2025/7/30 8:44:39 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

压与静止补偿装置的电压相配合,以避免采用中间变压器。

第3.1.3条 本条明确提出了进行无功补偿装置的主接线设计中应考虑的主要条件和基本要求,其中供电可靠和节约投资应是最主要的基本要求。针对无功补偿装置的补偿性质和安装容量与负荷增长情况密切相关,需要分期分批投资建设的特点,在设计主接线及总布置时要考虑有利于分期扩建、改建等要求。设计中应根据方针政策,结合工程具体情况,综合考虑对主接线的要求,并通过技术经济比较确定。

第3.1.4条 本条文规定了主接线可靠性的基本要求。对主接线可靠性的评价,最好是通过可靠性计算,但由于目前缺乏计算用的基本参数,因此,还不能以计算作为判据来决定主接线的方案,只作为设计时的参考。

330~500kV变电所中的无功补偿装置,除了要求装置本身有较高的可靠性外,更重要的是应考虑补偿装置对整个变电所及系统的安全运行可靠性的要求,因为330~500kV变电所牵涉的系统范围较大,出现不正常运行或故障后所带来的损失与后果较大。本条列出的涉及可靠性的三条原则性要求也是本着这个原则,并结合历年来运行和设计所积累的经验与教训提出的。

首先是要保证变电所主变压器的安全持续运行。因为主变压器三次侧装设多组无功补偿装置,一般为单母线接线,母线三相短路电流达40~50kA,主变压器三次侧总的容性电流达数千安。目前国内尚无适合于主变压器第三绕组出口技术要求的总断路器,因此很多工程只能不装设此总断路器。

在主接线设计时,应首先考虑在此种情况下任一组无功补偿装置出现故障时不影响主变压器的连续运行,同时在母线及其所连接的分支设备的本体布置设计时,也要尽量减少发生两相短路的几率,保证主变压器的连续运行。

图3.1.4 单相桥差保护接线图

近年来,单台大容量并联电容器爆炸事故较多(见表5.2.3.1),所造成的损失较大。例如:1988年10月16日,凤凰山500kV变电所发生120台334kvar并联电容器因2台电容器爆炸及桥差电流互感器爆炸起火而全部烧毁,损失惨重。这次事故的事故报告中指出:单相桥差保护接线方式(接线示意图见图3.1.4)的并联电容器组,“??由于电容器上产生了2倍以上的过电压??先有一台电容器在过电压下首先击穿。一台电容器全击穿,全组电容器向它放电,同时,并联的另一组电容器(30台每台334kvar)经平衡电流互感器向它放电,电流互感器内有大电流流过,大能量耗散于平衡电流互感器中,致使一声巨响使该电流互感器和电容器爆炸,破损后,短路电弧使有机绝缘物和绝缘油燃烧起火??其余电容器也先后烧坏。”从中看出,该组电容器的接线是将60台334kvar电容器并接于一段中,致使对故障电容器的放电能量(该报告计算得出为248kJ)远大于电容器的耐爆能量,同时又由于采用单相桥差

平衡电流互感器保护接线,致使发生这类事故时,平衡电流互感器承受30台334kvar电容器放电冲击过电流,致使其爆炸。这是单相桥差保护接线的缺点。对于大容量并联电容器组,为了减少并联段电容器过多引起放电能量过大,应选用双星形接线方式。另外在主接线设计时也要十分注意合理选择无功补偿装置中的配套设备。

无功补偿装置的容性或感性参数与各种运行方式下的系统综合阻抗的配合不当,可能出现对某次谐波的谐振或谐波放大,其后果重则发生重大事故,轻则影响输送电能的波形质量。因此,合理选择无功补偿装置的分组容量以避免可能导致危害的谐振及谐波放大,应作为主接线设计可靠性要求之一。

第3.1.5条 本条规定是根据330~500kV变电所要求其主变压器三次侧装设无功补偿装置最终规模为2组并联电抗器,4组并联电容器,一个所用电间隔,连同主变压器出线间隔及其旁路间隔,总共为9个元件,无功补偿装置又允许暂时停止运行的条件制定的。因此,参照变电所设计技术规程规定,对于63kV及以下的电压等级,母线上总元件数为9个,一般应为单母线接线方式或按总断路器性能要求可采用单母线分段接线方式,一般以隔离开关分段。这是因为总回路通过总负荷电流(在全部无功补偿装置投入运行时)大于单台断路器切合能力。例如有的工程中采用两台总断路器,并兼作互为检修备用。东北地区的海城变电所及华北地区的房山变电所即为此种接线方式。

10~63kV无功补偿装置在选择接线方式时首先要基于以下几点原则: (1)立足于当前国产设备;

(2)满足第3.1.4条规定的可靠性要求;

(3)串、并联电抗器、电容器及其电流互感器、隔离开关的分相布置方式和提高主变压器三次侧母线相对地绝缘水平和相间距离的设计标准,以此作为尽量避免主变压器三次侧发生相间短路的有效措施。

根据这些原则,总结现有工程设计经验,可有以下几种接线方式供工程设计中进行技术经济比较时参考:

(1)主变压器三次侧装总断路器,无功补偿各支路经或不经限流电抗器(兼作电容器支路串联电抗器)装设负荷开关。此种接线方式一般适用于能解决总断路器的供货,且无功补偿装置组数较多,三相铁心电抗器及并联电容器均为非分相布置情况。

(2)主变压器三次侧不装总断路器,无功补偿各支路装设断路器或晶闸管投切装置。此种接线方式要求分支断路器能开断母线三相短路电流,一般适用于组数较少,三相铁心电抗器或并联电容器为非分相布置情况。

(3)主变压器三次侧不装总断路器,在并联电抗器支路的中性点装设断路器(或负荷开关)或晶闸管投切装置,在并联电容器支路经限流电抗器(兼作电容器支路串联电抗器)装设断路器(对于单星形接线的电容器组限流电抗器可装在中性点侧)。此种接线方式对三次侧母线的相对地绝缘水平和相间距离的设计标准均比常规标准高,以尽量避免发生相间短路的可能,一般适用于单相空心串、并联电抗器,且电抗器、电容器及其电流互感器、隔离开关均为分相布置的情况。此种接线方式美国G/C设计公司等已广泛采用。

(4)主变压器三次侧不装总断路器,在并联电抗器、并联电容器支路经限流电抗器(兼作电容器回路的串联电抗器)装设断路器或晶闸管投切装置。此种接线方式一般适用于当断路

器不能开断母线短路电流且分组数较少,采用单相空心串联电抗器或并联电容器为非分相布置(三相多层布置)的情况。东北的吉林省长春合心变电所及黑龙江省的哈南变电所即为此种接线方式。

(5)当具有较多组大容量并联电容器时,在满足回路设备所允许短路电流时,采用小值串联电抗限制涌流(以0.5%~1%的串联电抗器代替6%串联电抗器可节省投资),另装设或不装设小容量谐波滤波器的接线方式。选用此种接线方式应有技术经济论证,确保变电所母线的谐波指标满足SD126《电力系统谐波管理暂行规定》的要求。东北的辽宁省沈阳500kV变电所即为此种接线方式。

第3.1.6条 本条规定的原则是表明,在决定高压并联电抗器安装接线位置时,应根据布置条件、占地面积、载波通信质量及载波、继电保护可靠性等技术经济综 合比较后决定。在某些情况下,经验算能保证通信质量时(或在电抗器回路另加阻波器措施后),将电抗器装在阻波器的线路侧有可能缩小配电装置纵向尺寸。

第3.1.7条 基于每组主变压器三次侧安装的无功补偿装置主要是补偿本组变压器本身及其220kV母线侧所需要的无功容量,又由于配电装置布置不易实现的原因,因此各组变压器三次侧无功补偿装置之间一般不考虑并联运行,也不宜装设相互切换的设施。 第3.1.8条 500kV变电所中的无功补偿装置,一般装设在主变压器的三次电压侧(15.75~63kV),其分支及总断路器较难解决,特别是总断路器在工程设计时是否设置及如何选用至关重要。其原因是:

(1)开断短路电流较大,为130~35kA;

(2)能投切8.8~2kA的容性工频电流(此值对应于额定电压15.75~63kV、240Mvar的容性负荷)且不发生重燃;

(3)回路的固有频率极高(10~20kHz),断路器应能承受极高的恢复电压上升速率。 断路器满足上述那样苛刻的技术条件是十分困难的,造价也十分昂贵,它们均是进口设备,需要大量外汇。在工程设计考虑无功补偿装置主接线时如何解决此断路器是较突出的问题。为此国内也有一些变电所设计中省去了这个总断路器。其主要理由是:

(1)主变压器三次侧电压15.75~63kV均是不接地系统,即便发生单相接地也不会使断路器跳闸。

(2)主变压器三次侧的低压电抗器和隔离开关选用单相式的分相布置,避免发生相间短路,提高供电可靠性。如:经不完全统计约30个500kV变电所的初步设计中省去主变压器三次侧总断路器的就有长春合心、哈南、江都、南京、黄渡等五个变电所,它们均选用单相户外空心干式并联电抗器,可避免发生相间短路,其可靠性优于三相油浸铁心式电抗器。 (3)主变压器三次侧电压母线的相间距离一般比常规的高,当必要时也可提高其绝缘水平。

(4)国内500kV变电所中的低压并联电容器组用的断路器,绝大部分是选用引进技术制造的或进口的设备,投切电容器组的可靠性较高。

基于以上几点原因,可能使主变压器三次侧发生相间故障几率较小,因此也就可以考虑省去既昂贵又难以解决的总断路器。

但是,经向大多数运行单位调查表明,他们很难接受省去500kV变电所主变压器三次

侧出口总断路器的设计方案。其理由是一旦这一侧母线及其所连接的设备发生相间故障(尤其对于无功补偿装置组数超过4组时),将使500kV变电所全停电,这对系统造成的损失可能是很大的。

第3.1.9条 330~500kV变电所内的感性无功补偿,主要是补偿500kV线路的充电功率,而容性补偿是为供给主变压器及220kV侧的无功需要,这两种补偿往往不允许长时间中断。本条规定中明确不要因为总断路器检修而将补偿装置退出运行,影响系统的正常运行。 第3.1.10条 相控电抗器回路中的晶闸管装置为控制电抗器运行的设备,能起到负荷开关的作用,可用于正常运行条件下的操作。故当主回路装设具有切短路故障能力的总断路器,并在其他分支回路装设负荷开关时,在相控电抗器回路可不装设负荷开关。静止无功补偿装置在我国尚属新技术,国内尚在试制阶段,相控电抗器的可靠性有待实践考验。因此,为保证主变压器及变电所的运行可靠性,当不装设总断路器时,各分支回路包括相控电抗器回路均应装设具有切短路故障能力的断路器。

由于静止无功补偿装置中的谐波滤波器主要是吸收相控电抗器产生的谐波分量,故相控电抗器支路与谐波滤波器支路应固定连接在一起并为一个分支。

当谐波滤波器容量较大时,也可研究在该回路设分支断路器,因为谐波分量的大小取决于晶闸管装置中阀的导通角。当导通角为90°时,相控电抗器满发感性无功功率,但无谐波分量产生,故可不必投入谐波滤波器,以增加感性无功的有效输出。若谐波滤波器容量较大且无分支断路器,则谐波滤波器的容性无功功率将抵消一部分相控电抗器的感性无功功率,从而造成浪费。如设有分支断路器,此时就可将谐波滤波器切除,避免浪费。若谐波滤波器容量较小,造成的浪费较少,可不必花投资来装设分支断路器。在实际工程中,谐波滤波器支路是否装设分支断路器需根据不同运行方式下的技术经济比较确定。

第二节 并联电抗器和并联电容器及其配套设备的接线方式

第3.2.1条 如何合理选用低压并联电抗器回路投切电器,要根据电气接线方式、单组电抗器容量操作过电压倍数及母线三相短路电流大小等因素,经技术经济比较后选定。目前国内尚未生产15.75~63kV的大容量负荷开关,对于主变压器三次侧设有总断路器的接线方式,并联电抗器回路断路器只作投切电感电流用,不作开断三相短路电流用,这样可选用低开断容量的断路器(以此作负荷开关用),从而降低设备投资。

第3.2.2条 在主变压器三次侧电压低于35kV以下时,将会出现本条的情况。目前500kV变电所通用设计表明,35kV侧母线三相短路电流已为43.01kA(主变压器容量为750MVA),因此就要选用开断50kA三相短路电流的断路器。目前国产设备只有126kV级的SF6断路器才有此能力,即要提高两个电压等级。用此种方式,还是采用加装限流电抗器,或装设总断路器,或电抗器中性点侧装断路器,则要作技术经济比较确定。例如:东北黑龙江省的哈南500kV变电所35kV并联电抗器回路,经技术经济比较后采用断路器前加装限流电抗器的接线方式,而且将限流电抗器的电抗值计入电抗器回路的总电抗。

第3.2.3条 断路器开断低压并联电抗器时,由于断路器截流,电抗器上储存的能量将通过电抗器入口端的等值电容释放,并产生振荡,在电抗器上形成截流过电压。空气断路器产生的截流过电压较大,真空断路器次之,六氟化硫断路器产生的截流过电压最小。

搜索更多关于: 变电所无功补偿装置设计技术规定 的文档
变电所无功补偿装置设计技术规定.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c1tb651uten507xn0vyrl_8.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top