【详解】(1)解:∵f?x??1?x?lnx,x?0, ax
∴
f'?x??x?x21a,
∵f?x?在1,???上为增函数, ?∴
f'?x??x?x1a?0在?1,???上恒成立, 21在?1,???上恒成立, x1∵0??1,
x即a?∴a?1,
∴a的取值范围是1,???.
(2)证明:由(1)知a?1时,f?x??∴令x??1?x?lnx在?1,???上为增函数, xn,其中n?N,n?2, n?1则x?1, 则f?x??f??n???f?1?, n?1??nn?1?lnn??1?lnn?0, 即
nn?1nn?1n?11即lnn?ln?n?1??,
n1∴ln2?ln1?
21ln3?ln2?
31ln4?ln3?
41?……
1, n1111∴累加得lnn????????,
234nlnn?ln?n?1??∴n?elnn?e2?3?4?????n.
1111
【点睛】本题关键在于构造出所需函数,得其单调性,累加可得,属于难度题。
相关推荐: