优质文档
综上:t??23.
21.试题分析:(1)根据导数的几何意义f??1??e,求得a,再根据函数g?x?是奇函数,可求得b?0;(2)根据(1)的结论,可将问题转化为?x???1,2?,e?kx恒成立,通过讨
x论自变量的正负,参变分离后可将问题转化为
?exk?,x??0,2???xx?0时,k?R,?当x?0时,有?成立x?k?e,x???1,0??x?exh?x??,x???1,0?x,这样设函数
(3)点?0,2?,利用导数求函数的最值,即得k的取值范围;
A,B
在曲线上,设出点的坐标,经过指对互化,表示x1x2,再通过分析法证明x1x2?1. 试题解析:解:( 1)
f??x??3ae3ax,?f??1??3ae3a?e?a?1, 3g?x??kx?b为奇函数,?b?0;
(2)由(1)知f?x??e,g?x??kx,
x因为当x???2,2?时,图像C恒在l的上方,所以?x???1,2?,e?kx恒成立,
xex,x???1,0?记h?x??x?0,2?,则h??x??x?1xe,由h??x??0?x??1,2?, 2x?h?x?在??2,0?单调减,在?0,1?单调减,在?1,2?单调增, ?exk?,x??0,2????112?x?k??2,e?, ??x?2e2??k?e,x???2,0??x?综上,所求实数k的取值范围是???112?,e?; 2?2e2?(3)由(2)知0?x1?1?x2,设x2?tx1?t?1?,
ex1?kx1,ex2?kx2,?ex2?x1?x2?e?t?1?x1?t, x1优质文档
优质文档
lnt?lnt?,?x1x2?tx12?t??t?1?x1?lnt?x1??, t?1t?1??要证x1x2?1,即证t22lnt?1,令??t???1?, t?12即证2?ln????1?2?ln????1?0, 令?????2?ln????1???1?,即证?????0,
2??????2ln??2??2????????2??2?2?1????,
??1,????????0,??????在?1,???上单调减,
??????????1??0,?????在?1,???上单调减, ????????1??0,
所以,x1x2?1
?x1?1 x222.选修4-4:坐标系与参数方程 【答案】(1)?x?2??y2?4(2)
222x??cos?,y??sin?,??x?y试题分析:(1)利用将曲线C的极方程化为直角坐标22x?(y?4)?16 方程:
2(2)利用直线参数方程几何意义得
|PA|?|PB|?|t1?t2|?|t1?t2|?(t1?t2)2?4t1t2,因
此将直线参数方程与圆直角坐标方程联立方程组,利用韦达定理代入化简得
|PA|?|PB|12+4sin2??22 13?3??1x??x?x????23.试题解析: (1)原不等式等价于?或?2, 22或?2???4?4x?6??2?6?4x?4?6111533?x?或?x?或?x?,
22222215∴不等式f(x)?5的解集为[?,].
22得?(2) ∵f(x)?|2x?1|?|2x?3|?|2x?1?(2x?3)|?2,
优质文档
优质文档
∴6m2?4m?[f(x)]min?2?3m2?2m?1?0??
1?m?1. 3优质文档
相关推荐: