±ØÐÞ1
µÚÒ»Õ ¼¯ºÏÓ뺯Êý¸ÅÄî
Ò»¡¢¼¯ºÏÓйظÅÄî
1¡¢¼¯ºÏµÄº¬Ò壺ijЩָ¶¨µÄ¶ÔÏó¼¯ÔÚÒ»Æð¾Í³ÉΪһ¸ö¼¯ºÏ£¬ÆäÖÐÿһ¸ö¶ÔÏó½ÐÔªËØ¡£ 2¡¢¼¯ºÏµÄÖÐÔªËØµÄÈý¸öÌØÐÔ£º 1.ÔªËØµÄÈ·¶¨ÐÔ£»2.ÔªËØµÄ»¥ÒìÐÔ£»3.ÔªËØµÄÎÞÐòÐÔ ·Ç¸ºÕûÊý¼¯£¨¼´×ÔÈ»Êý¼¯£©¼Ç×÷£ºN
ÕýÕûÊý¼¯ N*»ò N+ ÕûÊý¼¯Z ÓÐÀíÊý¼¯Q ʵÊý¼¯R ¹ØÓÚ¡°ÊôÓÚ¡±µÄ¸ÅÄî
¼¯ºÏµÄÔªËØÍ¨³£ÓÃСдµÄÀ¶¡×Öĸ±íʾ£¬È磺aÊǼ¯ºÏAµÄÔªËØ£¬¾Í˵aÊôÓÚ¼¯ºÏA ¼Ç×÷ a¡ÊA £¬Ïà·´£¬a²»ÊôÓÚ¼¯ºÏA ¼Ç×÷ a?A
¶þ¡¢¼¯ºÏ¼äµÄ»ù±¾¹ØÏµ
ÈκÎÒ»¸ö¼¯ºÏÊÇËü±¾ÉíµÄ×Ó¼¯¡£A?A
¢ÚÕæ×Ó¼¯:Èç¹ûA?B,ÇÒB? AÄǾÍ˵¼¯ºÏAÊǼ¯ºÏBµÄÕæ×Ó¼¯£¬¼Ç×÷A? B(»òB? A) 3. ²»º¬ÈκÎÔªËØµÄ¼¯ºÏ½Ð×ö¿Õ¼¯£¬¼ÇΪ¦µ
¹æ¶¨: ¿Õ¼¯ÊÇÈκμ¯ºÏµÄ×Ó¼¯£¬ ¿Õ¼¯ÊÇÈκηǿռ¯ºÏµÄÕæ×Ó¼¯¡£ Èý¡¢¼¯ºÏµÄÔËËã
1£®½»¼¯µÄ¶¨Ò壺һ°ãµØ£¬ÓÉËùÓÐÊôÓÚAÇÒÊôÓÚBµÄÔªËØËù×é³ÉµÄ¼¯ºÏ,½Ð×öA,BµÄ½»¼¯£®(¼´ÕÒ¹«¹²²¿·Ö)¼Ç×÷A¡ÉB(¶Á×÷¡±A½»B¡±)£¬¼´A¡ÉB={x|x¡ÊA£¬ÇÒx¡ÊB}£®
2¡¢²¢¼¯µÄ¶¨Ò壺һ°ãµØ£¬ÓÉËùÓÐÊôÓÚ¼¯ºÏA»òÊôÓÚ¼¯ºÏBµÄÔªËØËù×é³ÉµÄ¼¯ºÏ£¬½Ð×öA,BµÄ²¢¼¯¡££¨¼´AºÍBÖÐËùÓеÄÔªËØ£©¼Ç×÷£ºA¡ÈB(¶Á×÷¡±A²¢B¡±)£¬¼´A¡ÈB={x|x¡ÊA£¬»òx¡ÊB}£®
4¡¢È«¼¯Óë²¹¼¯
£¨1£©²¹¼¯£ºÉèSÊÇÒ»¸ö¼¯ºÏ£¬AÊÇSµÄÒ»¸ö×Ó¼¯£¨¼´ £©£¬ÓÉSÖÐËùÓв»ÊôÓÚAµÄÔªËØ×é³ÉµÄ¼¯ºÏ£¬½Ð×öSÖÐ×Ó¼¯AµÄ²¹¼¯£¨»òÓ༯£©£¨¼´³ýÈ¥AʣϵÄÔªËØ×é³ÉµÄ¼¯ºÏ£©
ËÄ¡¢º¯ÊýµÄÓйظÅÄî ¶¨ÒåÓò²¹³ä
ÄÜʹº¯ÊýʽÓÐÒâÒåµÄʵÊýxµÄ¼¯ºÏ³ÆÎªº¯ÊýµÄ¶¨ÒåÓò£¬Çóº¯ÊýµÄ¶¨ÒåÓòʱÁв»µÈʽ×éµÄÖ÷ÒªÒÀ¾ÝÊÇ£º(1)·ÖʽµÄ·Öĸ²»µÈÓÚÁ㣻 (2)ż´Î·½¸ùµÄ±»¿ª·½Êý²»Ð¡ÓÚÁ㣻 (3)¶ÔÊýʽµÄÕæÊý±ØÐë´óÓÚÁ㣻(4)Ö¸Êý¡¢¶ÔÊýʽµÄµ×±ØÐë´óÓÚÁãÇÒ²»µÈÓÚ1. (5)Èç¹ûº¯ÊýÊÇÓÉһЩ»ù±¾º¯Êýͨ¹ýËÄÔòÔËËã½áºÏ¶ø³ÉµÄ.ÄÇô£¬ËüµÄ¶¨ÒåÓòÊÇʹ¸÷²¿·Ö¶¼ÓÐÒâÒåµÄxµÄÖµ×é³ÉµÄ¼¯ºÏ.£¨6£©Ö¸ÊýΪÁãµ×²»¿ÉÒÔµÈÓÚÁã (6)ʵ¼ÊÎÊÌâÖеĺ¯ÊýµÄ¶¨ÒåÓò»¹Òª±£Ö¤Êµ¼ÊÎÊÌâÓÐÒâÒå.
(ÓÖ×¢Ò⣺Çó³ö²»µÈʽ×éµÄ½â¼¯¼´Îªº¯ÊýµÄ¶¨ÒåÓò¡£) ¹¹³Éº¯ÊýµÄÈýÒªËØ£º¶¨ÒåÓò¡¢¶ÔÓ¦¹ØÏµºÍÖµÓò 4£®Á˽âÇø¼äµÄ¸ÅÄî
£¨1£©Çø¼äµÄ·ÖÀࣺ¿ªÇø¼ä¡¢±ÕÇø¼ä¡¢°ë¿ª°ë±ÕÇø¼ä£»£¨2£©ÎÞÇîÇø¼ä£»£¨3£©Çø¼äµÄÊýÖá±íʾ£® 7£®º¯Êýµ¥µ÷ÐÔ £¨1£©£®Ôöº¯Êý
É躯Êýy=f(x)µÄ¶¨ÒåÓòΪI£¬Èç¹û¶ÔÓÚ¶¨ÒåÓòIÄÚµÄij¸öÇø¼äDÄÚµÄÈÎÒâÁ½¸ö×Ô±äÁ¿a£¬b£¬µ±a
Èç¹û¶ÔÓÚÇø¼äDÉϵÄÈÎÒâÁ½¸ö×Ô±äÁ¿µÄÖµa£¬b£¬µ±a
×¢Ò⣺1 º¯ÊýµÄµ¥µ÷ÐÔÊÇÔÚ¶¨ÒåÓòÄÚµÄij¸öÇø¼äÉϵÄÐÔÖÊ£¬ÊǺ¯ÊýµÄ¾Ö²¿ÐÔÖÊ£» 2 ±ØÐëÊǶÔÓÚÇø¼äDÄÚµÄÈÎÒâÁ½¸ö×Ô±äÁ¿a£¬b£»µ±a
Èç¹ûº¯Êýy=f(x)ÔÚij¸öÇø¼äÊÇÔöº¯Êý»ò¼õº¯Êý£¬ÄÇô˵º¯Êýy=f(x)ÔÚÕâÒ»Çø¼äÉϾßÓÐ(ÑϸñµÄ)µ¥µ÷ÐÔ£¬ÔÚµ¥µ÷Çø¼äÉÏÔöº¯ÊýµÄͼÏó´Ó×óµ½ÓÒÊÇÉÏÉýµÄ£¬¼õ º¯ÊýµÄͼÏó´Ó×óµ½ÓÒÊÇϽµµÄ.
(3).º¯Êýµ¥µ÷Çø¼äÓëµ¥µ÷ÐÔµÄÅж¨·½·¨
(A) ¶¨Òå·¨£ºÈÎÈ¡a£¬b¡ÊD£¬ÇÒa
- 1 -
£¨¼´Åжϲîf(a)£f(b)µÄÕý¸º£©£»5 ϽáÂÛ£¨Ö¸³öº¯Êýf(x)ÔÚ¸ø¶¨µÄÇø¼äDÉϵĵ¥µ÷ÐÔ£©£®
(B)ͼÏó·¨(´ÓͼÏóÉÏ¿´Éý½µ)_ (C)¸´ºÏº¯ÊýµÄµ¥µ÷ÐÔ
¸´ºÏº¯Êýf[g(x)]µÄµ¥µ÷ÐÔÓë¹¹³ÉËüµÄº¯Êýu=g(x)£¬y=f(u)µÄµ¥µ÷ÐÔÃÜÇÐÏà¹Ø
×¢Ò⣺1¡¢º¯ÊýµÄµ¥µ÷Çø¼äÖ»ÄÜÊÇÆä¶¨ÒåÓòµÄ×ÓÇø¼ä ,²»Äܰѵ¥µ÷ÐÔÏàͬµÄÇø¼äºÍÔÚÒ»Æðд³ÉÆä²¢¼¯. 8£®º¯ÊýµÄÆæÅ¼ÐÔ
£¨1£©Å¼º¯Êý
Ò»°ãµØ£¬¶ÔÓÚº¯Êýf(x)µÄ¶¨ÒåÓòÄÚµÄÈÎÒâÒ»¸öx£¬¶¼ÓÐf(£x)=f(x)£¬ÄÇôf(x)¾Í½Ð×öżº¯Êý£® £¨2£©£®Ææº¯Êý
Ò»°ãµØ£¬¶ÔÓÚº¯Êýf(x)µÄ¶¨ÒåÓòÄÚµÄÈÎÒâÒ»¸öx£¬¶¼ÓÐf(£x)=¡ªf(x)£¬ÄÇôf(x)¾Í½Ð×öÆæº¯Êý£® ×¢Ò⣺1¡¢ º¯ÊýÊÇÆæº¯Êý»òÊÇżº¯Êý³ÆÎªº¯ÊýµÄÆæÅ¼ÐÔ£¬º¯ÊýµÄÆæÅ¼ÐÔÊǺ¯ÊýµÄÕûÌåÐÔÖÊ£»º¯Êý¿ÉÄÜûÓÐÆæÅ¼ÐÔ,Ò²¿ÉÄܼÈÊÇÆæº¯ÊýÓÖÊÇżº¯Êý¡£
2¡¢ Óɺ¯ÊýµÄÆæÅ¼ÐÔ¶¨Òå¿ÉÖª£¬º¯Êý¾ßÓÐÆæÅ¼ÐÔµÄÒ»¸ö±ØÒªÌõ¼þÊÇ£¬¶ÔÓÚ¶¨ÒåÓòÄÚµÄÈÎÒâÒ»¸öx£¬Ôò£xÒ²Ò»¶¨ÊǶ¨ÒåÓòÄÚµÄÒ»¸ö×Ô±äÁ¿£¨¼´¶¨ÒåÓò¹ØÓÚÔµã¶Ô³Æ£©£®
3¡¢¾ßÓÐÆæÅ¼ÐԵĺ¯ÊýµÄͼÏóµÄÌØÕ÷
żº¯ÊýµÄͼÏó¹ØÓÚyÖá¶Ô³Æ£»Ææº¯ÊýµÄͼÏó¹ØÓÚÔµã¶Ô³Æ£®
×ܽ᣺ÀûÓö¨ÒåÅжϺ¯ÊýÆæÅ¼ÐԵĸñʽ²½Ö裺1 Ê×ÏÈÈ·¶¨º¯ÊýµÄ¶¨ÒåÓò£¬²¢ÅÐ¶ÏÆä¶¨ÒåÓòÊÇ·ñ¹ØÓÚÔµã¶Ô³Æ£»2 È·¶¨f(£x)Óëf(x)µÄ¹ØÏµ£»3 ×÷³öÏàÓ¦½áÂÛ£ºÈôf(£x) = f(x) »ò f(£x)£f(x) = 0£¬Ôòf(x)ÊÇżº¯Êý£»Èôf(£x) =£f(x) »ò f(£x)£«f(x) = 0£¬Ôòf(x)ÊÇÆæº¯Êý£®
×¢Ò⣺º¯Êý¶¨ÒåÓò¹ØÓÚÔµã¶Ô³ÆÊǺ¯Êý¾ßÓÐÆæÅ¼ÐԵıØÒªÌõ¼þ£®Ê×ÏÈ¿´º¯ÊýµÄ¶¨ÒåÓòÊÇ·ñ¹ØÓÚÔµã¶Ô³Æ£¬Èô²»¶Ô³ÆÔòº¯ÊýÊÇ·ÇÆæ·Çżº¯Êý.Èô¶Ô³Æ£¬(1)ÔÙ¸ù¾Ý¶¨ÒåÅж¨; (2)ÓÐʱÅж¨f(-x)=¡Àf(x)±È½ÏÀ§ÄÑ£¬¿É¿¼ÂǸù¾ÝÊÇ·ñÓÐf(-x)¡Àf(x)=0»òf(x)/f(-x)=¡À1À´Åж¨; (3)ÀûÓö¨Àí£¬»ò½èÖúº¯ÊýµÄͼÏóÅж¨ .
10£®º¯Êý×î´ó£¨Ð¡£©Öµ£¨¶¨Òå¼û¿Î±¾£© £¨1£©¡¢ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊ£¨Åä·½·¨£©Çóº¯ÊýµÄ×î´ó£¨Ð¡£©Öµ. £¨2£©¡¢ÀûÓÃͼÏóÇóº¯ÊýµÄ×î´ó£¨Ð¡£©Öµ £¨3£©¡¢ÀûÓú¯Êýµ¥µ÷ÐÔµÄÅжϺ¯ÊýµÄ×î´ó£¨Ð¡£©Öµ£ºÈç¹ûº¯Êýy=f(x)ÔÚÇø¼ä[a£¬b]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[b£¬c]Éϵ¥µ÷µÝ¼õÔòº¯Êýy=f(x)ÔÚx=b´¦ÓÐ×î´óÖµf(b)£»Èç¹ûº¯Êýy=f(x)ÔÚÇø¼ä[a£¬b]Éϵ¥µ÷µÝ¼õ£¬ÔÚÇø¼ä[b£¬c]Éϵ¥µ÷µÝÔöÔòº¯Êýy=f(x)ÔÚx=b´¦ÓÐ×îСֵf(b)£»
µÚ¶þÕ »ù±¾³õµÈº¯Êý
Ò»¡¢Ö¸Êýº¯Êý
a?nam(a?0,m,n?N*,n?1)£¬amn?mn?1amn?1nam(a?0,m,n?N*,n?1)
0µÄÕý·ÖÊýÖ¸ÊýÃݵÈÓÚ0£¬0µÄ¸º·ÖÊýÖ¸ÊýÃÝûÓÐÒâÒå 3£®ÊµÊýÖ¸ÊýÃݵÄÔËËãÐÔÖÊ
rrr?s£¨1£©a2a?a(a?0,r,s?R)£»
rsrs(a)?a£¨2£©(a?0,r,s?R)£» rrs(ab)?aa(a?0,r,s?R)£® £¨3£©
£¨¶þ£©Ö¸Êýº¯Êý¼°ÆäÐÔÖÊ
1¡¢Ö¸Êýº¯ÊýµÄ¸ÅÄһ°ãµØ£¬º¯Êýy?a(a?0,ÇÒa?1)½Ð×öÖ¸Êýº¯Êý£¨exponential function£©£¬ÆäÖÐxÊÇ×Ô±äÁ¿£¬º¯ÊýµÄ¶¨ÒåÓòΪR£®
×¢Ò⣺ָÊýº¯ÊýµÄµ×ÊýµÄȡֵ·¶Î§£¬µ×Êý²»ÄÜÊǸºÊý¡¢ÁãºÍ1£®
2¡¢Ö¸Êýº¯ÊýµÄͼÏóºÍÐÔÖÊ
- 2 -
x a>1 650 ¶þ¡¢¶ÔÊýº¯Êý £¨Ò»£©¶ÔÊý x1£®¶ÔÊýµÄ¸ÅÄһ°ãµØ£¬Èç¹ûa?N(a?0,a?1)£¬ÄÇôÊýx½Ð×öÒÔ£®aΪµ×£®£®NµÄ¶ÔÊý£¬¼Ç×÷£º x?logaN£¨a¡ª µ×Êý£¬N¡ª ÕæÊý£¬logaN¡ª ¶ÔÊýʽ£© 1 ×¢Òâµ×ÊýµÄÏÞÖÆa?0£¬ÇÒa?1£» ˵Ã÷£º¡ð 2ax?N?logaN?x£» ¡ð 3 ×¢Òâ¶ÔÊýµÄÊéд¸ñʽ£® ¡ð Á½¸öÖØÒª¶ÔÊý£º logaN1 ³£ÓöÔÊý£ºÒÔ10Ϊµ×µÄ¶ÔÊýlgN£» ¡ð 2 ×ÔÈ»¶ÔÊý£ºÒÔÎÞÀíÊýe?2.71828?Ϊµ×µÄ¶ÔÊýµÄ¶ÔÊýlnN£® ¡ð - 3 - ¶ÔÊýʽÓëÖ¸ÊýʽµÄ»¥»¯ logaN?x ? ax?N ¶ÔÊýʽ ? Ö¸Êýʽ ¶ÔÊýµ×Êý ¡û a ¡ú Ãݵ×Êý ¶ÔÊý ¡û x ¡ú Ö¸Êý ÕæÊý ¡û N ¡ú ÃÝ £¨¶þ£©¶ÔÊýµÄÔËËãÐÔÖÊ Èç¹ûa?0£¬ÇÒa?1£¬M?0£¬N?0£¬ÄÇô£º£¨1£©loga(M2N)?logaM£«logaN£»£¨2£© logaM?logaM£logaN£»£¨3£©logaMn?nlogaM(n?R)£® N×¢Ò⣺»»µ×¹«Ê½logab?logcb£¨a?0£¬ÇÒa?1£»c?0£¬ÇÒc?1£»b?0£©£® logcaÀûÓû»µ×¹«Ê½ÍƵ¼ÏÂÃæµÄ½áÂÛ n£¨1£©logamb?nlogab£» m£¨2£©logab?1£® logba£¨¶þ£©¶ÔÊýº¯Êý 1¡¢¶ÔÊýº¯ÊýµÄ¸ÅÄº¯Êýy?logax(a?0£¬ÇÒa?1)½Ð×ö¶ÔÊýº¯Êý£¬ÆäÖÐxÊÇ×Ô±äÁ¿£¬º¯ÊýµÄ¶¨ÒåÓòÊÇ£¨0£¬+¡Þ£©£® 1 ¶ÔÊýº¯ÊýµÄ¶¨ÒåÓëÖ¸Êýº¯ÊýÀàËÆ£¬¶¼ÊÇÐÎʽ¶¨Ò壬עÒâ±æ±ð¡£ ×¢Ò⣺¡ð £¨2£©¶ÔÊýº¯ÊýºÍÖ¸Êýº¯ÊýµÄÁªÏµÊÇxºÍyµÄλÖà È磺y?2log2x£¬y?log52¡¢¶ÔÊýº¯ÊýµÄÐÔÖÊ£º a>1 32.52x ¶¼²»ÊǶÔÊýº¯Êý£¬¶øÖ»ÄÜ³ÆÆäΪ¶ÔÊýÐͺ¯Êý£® 50 º¯ÊýÐÔÖÊ a?1 0?a?1a?1 0?a?1 º¯ÊýµÄ¶¨ÒåÓòΪ£¨0£¬£«¡Þ£© ·ÇÆæ·Çżº¯Êý º¯ÊýµÄÖµÓòΪR loga1?0
Ïà¹ØÍÆ¼ö£º