第一范文网 - 专业文章范例文档资料分享平台

考点14 基本不等式及其应用(1)-2020年高考数学二轮优化提升专题训练(解析版)

来源:用户分享 时间:2025/6/28 21:01:06 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

19bc-ac19bc-|b-c|c

b2

c?2??c?????b?,-+20??b???2

c

01.cc?c?2?c??c?

?b?+18?b?≤19;当01时,-?b???????

19bc-|b-c|c?c?+20?b?≤100,即的最大值为100,所以k≥100,即实数k的最小值

b2??

为100.

解法2(基本不等式) 因为ksin2B+sinAsinC>19sinBsinC,所以由正弦定理可19bc-ac19bc-acc?a?c

19-??得kb+ac>19bc,即k>b2.又b2=bb?.因为c

2

a??a??2??

??1+b?+?19-b??

a??a??a???????ac?a

+b,即b?19-b?

4b至??????aaa

少大于0).当且仅当1+b=19-b,即b=9时取等号.

题型三 运用双换元解决不等式问题

知识点拨:若题目中含是求两个分式的最值问题,对于这类问题最常用的方法就是双换元,分布运用两个分式的分母为两个参数,转化为这两个参数的不等关系。

例3、(2017苏州期末) 已知正数x,y满足x+y=1,则为________. 9

【答案】、4

411?41?解法1 令x+2=a,y+1=b,则a+b=4(a>2,b>1),a+b=4(a+b)?a+b?=

??4ba?11?98421

?5+a+b?≥(5+4)=,当且仅当a=,b=,即x=,y=时取等号. 4?43333?4

【变式1】、(2015苏锡常镇、宿迁一调)已知实数x,y满足x>y>0,且x+y≤2,21则+的最小值为________. x+3yx-y

11

41

+的最小值x+2y+1

3+22

【答案】、4 ?x+3y=m,【解析】、设?

?x-y=n.

m+3n?x=?4,解得?m-n

y=??4.

m+n

所以x+y=2≤2,即m+n≤4.

设t=

21212nm?21?+=m+n,所以4t≥?m+n?(m+n)=3+m+n≥3+22.即

??x+3yx-y

3+222nm

t≥4,当且仅当m=n,即m=2n时取等号.

解后反思 本题所给条件为x,y的和的不等式,所求的为与x,y相关的倒数和最值问题,可以先对分母进行还原处理后,再结合“1”的代换技巧来处理,这里要说明的时候条件 “x+y≤2”改为“x+y=2”答案不会变化.

【变式2】、(2015南京三模)已知x,y为正实数,则▲ . 【答案】、

4 34xy

+的最大值为 4x+yx+y

【解析】、思路分析1:由于所研究的代数式的分母比较复杂,故通过换元来进行简单,从而来研究此函数的最大值;

思路分析2:所研究的代数式涉及到两个变量x,y,为此将分式的分子、分母同除以y,将x,y合并为数的最值问题。

解析1:令a?4x?y,b?x?y?a,b?0?,从而得 ,故

x来达到“消元”的目的,这样就转化为只含一个变量的函y4xy4a?4b4b?a8?4ba?844??????????2?,当且仅当a?2b,4x?yx?y3a3b3?3a3b?393即y?2x时等号成立。

12

解析2:令t?x?0y,则

4x4xy14t111y??????1?? 4x?yx?y4x?1x?14t?1t?14t?1t?1yy?1?3t334114t?t?,当且仅当,即,也即?1??1??24t?5t?14t?124?53tt?5y?2x时等号成立。

213

考点14 基本不等式及其应用(1)-2020年高考数学二轮优化提升专题训练(解析版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c1x1ej3bd1j3qhtz4wh2h1h1yk7phhy00skl_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top