【解答】证明:(1)∵AC平分∠BCD, ∴∠DCA=∠ACB. 又∵AC⊥AB,AD⊥AE, ∴∠DAC+∠CAE=90°,∠CAE+∠EAB=90°, ∴∠DAC=∠EAB. 又∵E是BC的中点, ∴AE=BE, ∴∠EAB=∠ABC, ∴∠DAC=∠ABC, ∴△ACD∽△BCA, ∴
=
2
,
∴AC=CDBC; (2)①证明:连接AH. ∵∠ADC=∠BAC=90°,点H、D关于AC对称, ∴AH⊥BC. ∵EG⊥AB,AE=BE, ∴点G是AB的中点, ∴HG=AG, ∴∠GAH=GHA. ∵点F为AC的中点, ∴AF=FH, ∴∠HAF=∠FHA,
∴∠FHG=∠AHF+∠AHG=∠FAH+∠HAG=∠CAB=90°, ∴FH⊥GH; ②∵EK⊥AB,AC⊥AB, ∴EK∥AC, 又∵∠B=30°,
∴AC=BC=EB=EC. 又EK=EB, ∴EK=AC, 即AK=KE=EC=CA, ∴四边形AKEC是菱形.
【点评】本题考查了四边形综合题,需要熟练掌握相似三角形的判定与性质,“直角三角形斜边上的中线等于斜边的一半”、“在直角三角形中,30度角所对的直角边等于斜边的一半”以及菱形的判定才能解答该题,难度较大. 28.如图,在平面直角坐标系中,抛物线y=ax+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.
2
(1)求二次函数y=ax+bx+c的表达式;
2
17
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积; (3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.
【分析】(1)设出抛物线解析式,用待定系数法求解即可;
2
2
(2)先求出直线AB解析式,设出点P坐标(x,﹣x+4x+5),建立函数关系式S四边形APCD=﹣2x+10x,根据二次函数求出极值;
(3)先判断出△HMN≌△AOE,求出M点的横坐标,从而求出点M,N的坐标.
2
【解答】解:(1)设抛物线解析式为y=a(x﹣2)+9, ∵抛物线与y轴交于点A(0,5), ∴4a+9=5, ∴a=﹣1,
22
y=﹣(x﹣2)+9=﹣x+4x+5,
2
(2)当y=0时,﹣x+4x+5=0, ∴x1=﹣1,x2=5, ∴E(﹣1,0),B(5,0), 设直线AB的解析式为y=mx+n, ∵A(0,5),B(5,0), ∴m=﹣1,n=5, ∴直线AB的解析式为y=﹣x+5;
2
设P(x,﹣x+4x+5), ∴D(x,﹣x+5),
22
∴PD=﹣x+4x+5+x﹣5=﹣x+5x, ∵AC=4, ∴S四边形APCD=×AC×PD=2(﹣x+5x)=﹣2x+10x,
2
2
∴当x=﹣=时,
18
∴S四边形APCD最大=(3)如图,
,
过M作MH垂直于对称轴,垂足为H, ∵MN∥AE,MN=AE, ∴△HMN≌△AOE, ∴HM=OE=1,
∴M点的横坐标为x=3或x=1, 当x=1时,M点纵坐标为8, 当x=3时,M点纵坐标为8,
∴M点的坐标为M1(1,8)或M2(3,8), ∵A(0,5),E(﹣1,0), ∴直线AE解析式为y=5x+5, ∵MN∥AE,
∴MN的解析式为y=5x+b,
∵点N在抛物线对称轴x=2上, ∴N(2,10+b), ∵AE=OA+0E=26 ∵MN=AE
2
2
2
2
2
∴MN=AE,
2222
∴MN=(2﹣1)+[8﹣(10+b)]=1+(b+2) ∵M点的坐标为M1(1,8)或M2(3,8), ∴点M1,M2关于抛物线对称轴x=2对称, ∵点N在抛物线对称轴上, ∴M1N=M2N,
2
∴1+(b+2)=26, ∴b=3,或b=﹣7, ∴10+b=13或10+b=3
∴当M点的坐标为(1,8)时,N点坐标为(2,13), 当M点的坐标为(3,8)时,N点坐标为(2,3),
19
【点评】此题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值. 29.(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;
(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由; (3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则不要求写解答过程)
EB的值是多少?(直接写出结论,AD
【分析】(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;
(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论;
(3)作DF∥BC交AC于F,同(1)得:△DBE≌△CFD,得出EB=DF,证出△ADF是等腰直角三角形,得出DF=
AD,即可得出结果.
【解答】(1)证明:作DF∥BC交AC于F,如图1所示: 则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE, ∵△ABC是等腰三角形,∠A=60°, ∴△ABC是等边三角形, ∴∠ABC=∠ACB=60°, ∴∠DBE=120°,∠ADF=∠AFD=60°=∠A, ∴△ADF是等边三角形,∠DFC=120°, ∴AD=DF, ∵∠DEC=∠DCE, ∴∠FDC=∠DEC,ED=CD,
在△DBE和△CFD中,∴△DBE≌△CFD(AAS), ∴EB=DF, ∴EB=AD;
,
20
相关推荐: