……………………………………………………………精品资料推荐…………………………………………………
第三章习题答案
1. 分别用梯形公式、Simpson公式、Cotes公式计算积分I?解:1)用梯形公式有:
1?0.5xdx,并估计误差。
1?0.51?2??0.5xdx?2[f?1??f?0.5?]?4??1?2???0.42678
??1ET?f??b?a???1233??0.53?1?3?3?322f????????????2.6042?10??7.3657?10
12?4?事实上,
f?x??x,I??I?10.5xdx?0.43096441?0.5 f?0.5??f?1???0.4267767???211?0.5T?E?f???xdx??f?0.5??f?1????0.00418770.52?2)Simpson公式
?0.51xdx?1?0.5??3?f1?4f??????6??4?2??1??1?f?????1?23??0.43093 ???2??2??12?41?1?41??1????b?a?b?a??4?15?7S?4222E?f???f????????????1.18377?10 ??180?2?180?2??8???ET(f)ba123f''()2 48事实上,ES?f???0.51xdx?1?0.5???0.5?1?f0.5?4f?f1????????0.0000304 6?2????3)由Cotes公式有:
112?7f?0.5??32f?5??12f?3??32f?7??7f?1??xdx?????????0.590??8??4??8??? 1??4.94975?25.29822?10.39230?29.93326?7??0.430961801?11(71802325812787)
1
……………………………………………………………精品资料推荐…………………………………………………
6?2?1??1???945?11ECf???22945??2??4??????2.6974?10?6 ????64?EC7(f)2ba945*4f(6)()28 事实上,EC?f??0.0000003
2.证明Simpson公式?2.8?具有三次代数精度。 证明:
3令f?x??x3,则f?a??a3,f??a?b??a?b?3?2?????2??,f?b??b4b4左边??b?a4af?x?dx?x?b4a4
右边?b?a?6??f?a??4f??a?b??b4?a4?2???f?b????4故该公式的代数精度是3。而当f?x??x4时
左侧:
?baf?x?dx??bax4dx?15?b5?a5? 右侧:
b?a??b?a?b?4?6??f?a??4f??a?b??a??2???f?b????6??a4?4??b4??8??5b5?5a5?a4b?2a3b2?2a2b3?ab4?32左侧不等于右侧。所以Simpson具有三次代数精度.
3.分别用复化梯形公式和复化公式Simpson计算下列积分.
(1)?1x?04?x2dx,n?8,(3)?91xdx,n?4,?6204?sin?d?,n?6
解:(1)用复化梯形公式有:
h?b?a1?01n?8?8 2
,
……………………………………………………………精品资料推荐…………………………………………………
Tn??h??fa?2????2???1?f????8??2?f????8??3?f????8??4?f????8??5?f????8??6?f????8???7??f????f?1???8???1?0?2?(0.031128?0.061538?0.090566?0.11765?0.14235?0.16438?0.18361)?0.2??0.111416由复化Simpson公式有:
11???1??1??2??3??3??5??7???S8???f?0??2?(f???f???f??)?f?1??4?f???f???f???f????64??4??4??4??8??8??8?????8?1?0?2??0.061538?0.11765?0.16438??4??0.031128?0.090566?0.41235?0.18351??0.2????24?0.11157?2??1?1?e01?x2?xdx,n?10
解:删去 解(3):
?19xdx,n?4 由复化梯形公式有:
b?a9?1??2,n41T4??2f?1??f?9??2?f?3??f?5??f?7??
2h????1?3?2???3?5?7???17.2277由复化Simpson公式有:
1S4??4f?1??f?9??2f?5??4?f?3??f?7??6
2??1?3?2?5?43?7?17.32203???????(4)解:?64?sin2?d?,n?6
0由复化梯形公式:
?0b?a6?h???,?k?a?kh,k?1,2,3,4,5n636
55h??k?????T6?[f(a)?2?f(?k)?f(b)]?[f(0)?2?f???f??]?1.0356219236?36?k?1k?1?36?由复化Simpson公式:
3
?……………………………………………………………精品资料推荐…………………………………………………
512S4?T6?H6,H6?h?33k?0H6??36k?0?5??k??f????1.035834878,S4?1.0357638867236????h?f??1?,????,k?0,1,2,3,4,51kk??k?22?2?
11134.给定求积节点x0?,x1?,x2?,试推出计算积分?f?x?dx的插值型求积公式,并
0424写出它的截断误差。
解:
?10?1?f?x?dx?A0f???A1f?4??1????A2f?2??3??? ?4?1??3??x?x?????122??4??A0??dx?,0?11??13?3???????42??44?
13????x???x???114??4?A1???dx??0?11??13?3???????24??24?考虑到对称性,有A2?A0,于是有求积公式
?102?1?f?x?dx?[f???3?4??3?1f??]??4?3?1?f?? ?2?由于原式含有3个节点,故它至少有2阶精度。考虑到其对称性,可以猜想到它可能有3阶精度。事实上,对f?x原式左右两端相等:
12?1??3?1?1?1 [?????]??????x3dx
3?4??4?3?2?403333此外,容易验证原式对f?x不准确,故所构造出的求积公式有3阶精度。
?45.给定积分I??20sinxdx。
1?10?3; 2(1) 利用复化梯形公式计算上述积分值,使其截断误差不超过
(2) 取同样的求积节点,改用复化Simpson公式计算时,截断误差是多少? (3) 如果要求截断误差不超过10,那么使用复化Simpson公式计算时,应将积分
区间分成多少等分?
4
?6……………………………………………………………精品资料推荐…………………………………………………
(b?a)3''?3''f(?)??f(?) 解:(1) E(f)??12n296n2nT f?x?=sinx,f(x)?cosx,f(x)??sinx?E(f)?'''nT?396nsin??2???,??0,? 2?96n?2??3n当误差ET(f)?0.5?10?3时,n?25.6, 所以取n=26。
25h?则:h=?Tn?[f(0)?f()?2?f(x)]k5222k?1?1??2?3?25???{0?1?2[sin()?sin()?sin()?...?sin()]}?0.9465 25252525252(2)ESn[f]??b-ah4''''1?()f(?)??2?(?)4sin(?) 180218022n?2?(1??)4(n?26)?2?(1??)4?7?10?9 则ES[f]?n18022n18022n2?(1??)4?10?6 (3)ES[f]?n18022n则n?7.6?n=8
6.用Romberg求积方法计算下列积分,使误差不超过10?5。
(1)???2?2??10e?xdx;(2)?1?x2?02xsinxdx;(3)?x1?xdx;(4)?034dx
01?x21解(1):
?e0dx
(a)在[0,1]上用梯形公式:T1?(b)[0,二等分1]:2?1?1H1?f???0.68439656,T2?(T1?H1)?0.728069946,2??2?
41S1?T2?T1?0.7135121533(c)[0,四等分1]:21?1?1?3?H2?[f???f??]?0.705895578,T4?(T2?H2)?0.7169827622?2?4??4?21[f(0)?f(1)]?0.771743332?2 5
相关推荐: