精品文档
2015年高考数学试卷
一、选择题(每小题5分,共40分)
1.(5分)(2015?真题)复数i(2﹣i)=( ) A.1+2i B.1﹣2i
C.﹣1+2i D.﹣1﹣2i
2.(5分)(2015?真题)若x,y满足,则z=x+2y的最大值为( )
A.0 B.1 C. D.2
3.(5分)(2015?真题)执行如图所示的程序框图输出的结果为( )
A.(﹣2,2)
B.(﹣4,0)
C.(﹣4,﹣4) D.(0,﹣8)
4.(5分)(2015?真题)设α,β是两个不同的平面,m是直线且m?α,“m∥β“是“α∥β”的( )
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
5.(5分)(2015?真题)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )
精品文档
精品文档
A.2+
B.4+
C.2+2
D.5
6.(5分)(2015?真题)设{an}是等差数列,下列结论中正确的是( ) A.若a1+a2>0,则a2+a3>0 C.若0<a1<a2,则a2
B.若a1+a3<0,则a1+a2<0
D.若a1<0,则(a2﹣a1)(a2﹣a3)>0
7.(5分)(2015?真题)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是( )
A.{x|﹣1<x≤0}
B.{x|﹣1≤x≤1}
C.{x|﹣1<x≤1}
D.{x|﹣1<x≤2}
8.(5分)(2015?真题)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是( )
A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多 C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油 精品文档
精品文档
D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油
二、填空题(每小题5分,共30分)
9.(5分)(2015?真题)在(2+x)的展开式中,x的系数为 (用数字作答)
2
5
3
10.(5分)(2015?真题)已知双曲线a= .
﹣y=1(a>0)的一条渐近线为x+y=0,则
11.(5分)(2015?真题)在极坐标系中,点(2,距离为 .
)到直线ρ(cosθ+sinθ)=6的
12.(5分)(2015?真题)在△ABC中,a=4,b=5,c=6,则13.(5分)(2015?真题)在△ABC中,点M,N满足x= ,y= . 14.(5分)(2015?真题)设函数f(x)=
=2
,
=
= . ,若
=x
+y
,则
,
①若a=1,则f(x)的最小值为 ;
②若f(x)恰有2个零点,则实数a的取值范围是 .
三、解答题(共6小题,共80分) 15.(13分)(2015?真题)已知函数f(x)=
sincos﹣
sin
.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.
16.(13分)(2015?真题)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:
A组:10,11,12,13,14,15,16 B组;12,13,15,16,17,14,a
假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.
(Ⅰ)求甲的康复时间不少于14天的概率;
(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;
(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明) 17.(14分)(2015?真题)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点. (Ⅰ)求证:AO⊥BE.
(Ⅱ)求二面角F﹣AE﹣B的余弦值; (Ⅲ)若BE⊥平面AOC,求a的值. 精品文档
精品文档
18.(13分)(2015?真题)已知函数f(x)=ln
,
(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程; (Ⅱ)求证,当x∈(0,1)时,f(x)>(Ⅲ)设实数k使得f(x)
;
对x∈(0,1)恒成立,求k的最大值.
19.(14分)(2015?真题)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)
和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M. (Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);
(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由. 20.(13分)(2015?真题)已知数列{an}满足:a1∈N,a1≤36,且an+1=
(n=1,2,…),记集合M={an|n∈N}. (Ⅰ)若a1=6,写出集合M的所有元素;
(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数; (Ⅲ)求集合M的元素个数的最大值.
*
*
精品文档
精品文档
高考数学试卷(理科)
试题解析
一、选择题(每小题5分,共40分)
1.(5分)(2015?真题)复数i(2﹣i)=( ) A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i 【分析】利用复数的运算法则解答.
【解答】解:原式=2i﹣i=2i﹣(﹣1)=1+2i; 故选:A.
【点评】本题考查了复数的运算;关键是熟记运算法则.注意i=﹣1.
2
2
2.(5分)(2015?真题)若x,y满足,则z=x+2y的最大值为( )
A.0 B.1 C. D.2
【分析】作出题中不等式组表示的平面区域,再将目标函数z=x+2y对应的直线进行平移,即可求出z取得最大值.
【解答】解:作出不等式组表示的平面区域,
当l经过点B时,目标函数z达到最大值 ∴z最大值=0+2×1=2. 故选:D.
【点评】本题给出二元一次不等式组,求目标函数z=x+2y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.
3.(5分)(2015?真题)执行如图所示的程序框图输出的结果为( )
精品文档
精品文档
A.(﹣2,2) B.(﹣4,0) C.(﹣4,﹣4) D.(0,﹣8) 【分析】模拟程序框图的运行过程,即可得出程序运行后输出的结果. 【解答】解:模拟程序框图的运行过程,如下; x=1,y=1,
k=0时,s=x﹣y=0,t=x+y=2; x=s=0,y=t=2,
k=1时,s=x﹣y=﹣2,t=x+y=2; x=s=﹣2,y=t=2,
k=2时,s=x﹣y=﹣4,t=x+y=0; x=s=﹣4,y=t=0, k=3时,循环终止,
输出(x,y)是(﹣4,0). 故选:B. 【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,是基础题目.
4.(5分)(2015?真题)设α,β是两个不同的平面,m是直线且m?α,“m∥β“是“α∥β”的( )
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
【分析】m∥β并得不到α∥β,根据面面平行的判定定理,只有α内的两相交直线都平行于β,而α∥β,并且m?α,显然能得到m∥β,这样即可找出正确选项.
【解答】解:m?α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;
α∥β,m?α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β; ∴“m∥β”是“α∥β”的必要不充分条件. 故选B. 精品文档
精品文档
【点评】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.
5.(5分)(2015?真题)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )
A.2+ B.4+ C.2+2 D.5
【分析】根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EA=EB=1,OA=1,:BC⊥面AEO,AC=,OE=
判断几何体的各个面的特点,计算边长,求解面积. 【解答】解:根据三视图可判断直观图为: OA⊥面ABC,AC=AB,E为BC中点, EA=2,EC=EB=1,OA=1, ∴可得AE⊥BC,BC⊥OA,
运用直线平面的垂直得出:BC⊥面AEO,AC=,OE= ∴S△ABC=S△BCO=
2×2=2,S△OAC=S△OAB=2×
=
.
,
×1=
.
故该三棱锥的表面积是2故选:C.
【点评】本题考查了空间几何体的三视图的运用,空间想象能力,计算能力,关键是恢复直观图,得出几何体的性质. 精品文档
精品文档
6.(5分)(2015?真题)设{an}是等差数列,下列结论中正确的是( ) A.若a1+a2>0,则a2+a3>0 C.若0<a1<a2,则a2
B.若a1+a3<0,则a1+a2<0
D.若a1<0,则(a2﹣a1)(a2﹣a3)>0
【分析】对选项分别进行判断,即可得出结论.
【解答】解:若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;
若a1+a3<0,则a1+a2=2a1+d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B不正确; {an}是等差数列,0<a1<a2,2a2=a1+a3>2
2
,∴a2>,即C正确;
若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d≤0,即D不正确. 故选:C.
【点评】本题考查等差数列的通项,考查学生的计算能力,比较基础.
7.(5分)(2015?真题)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是( )
A.{x|﹣1<x≤0}
B.{x|﹣1≤x≤1}
C.{x|﹣1<x≤1}
D.{x|﹣1<x≤2}
【分析】在已知坐标系内作出y=log2(x+1)的图象,利用数形结合得到不等式的解集. 【解答】解:由已知f(x)的图象,在此坐标系内作出y=log2(x+1)的图象,如图
满足不等式f(x)≥log2(x+1)的x范围是﹣1<x≤1;所以不等式f(x)≥log2(x+1)的解集是{x|﹣1<x≤1}; 故选C.
【点评】本题考查了数形结合求不等式的解集;用到了图象的平移. 精品文档
精品文档
8.(5分)(2015?真题)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是( )
A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多 C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油 【分析】根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.
【解答】解:对于选项A,从图中可以看出当乙车的行驶速度大于40千米每小时时的燃油效率大于5千米每升,故乙车消耗1升汽油的行驶路程远大于5千米,故A错误; 对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,
对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,
对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D正确. 【点评】本题考查了函数图象的识别,关键掌握题意,属于基础题.
二、填空题(每小题5分,共30分)
9.(5分)(2015?真题)在(2+x)的展开式中,x的系数为 40 (用数字作答) 【分析】写出二项式定理展开式的通项公式,利用x的指数为3,求出r,然后求解所求数值.
【解答】解:(2+x)的展开式的通项公式为:Tr+1=所求x的系数为:
3
5
5
3
2
5﹣rr
x,
=40.
故答案为:40.
【点评】本题考查二项式定理的应用,二项式系数的求法,考查计算能力.
精品文档
精品文档
10.(5分)(2015?真题)已知双曲线﹣y=1(a>0)的一条渐近线为
2
x+y=0,则a=
.
【分析】运用双曲线的渐近线方程为y=±,结合条件可得=
,即可得到a的值.
【解答】解:双曲线﹣y=1的渐近线方程为y=±,
2
由题意可得=解得a=
.
,
故答案为:.
【点评】本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.
11.(5分)(2015?真题)在极坐标系中,点(2,
)到直线ρ(cosθ+
sinθ)=6的
距离为 1 .
【分析】化为直角坐标,再利用点到直线的距离公式距离公式即可得出. 【解答】解:点P(2,直线ρ(cosθ+
)化为P
.
.
=1.
sinθ)=6化为
∴点P到直线的距离d=
故答案为:1.
【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
12.(5分)(2015?真题)在△ABC中,a=4,b=5,c=6,则【分析】利用余弦定理求出cosC,cosA,即可得出结论. 【解答】解:∵△ABC中,a=4,b=5,c=6, ∴cosC=∴sinC=
=,cosA=
,sinA=
,
=
= 1 .
∴==1.
精品文档
相关推荐: