通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.
例10 计算:
我们用一个字母表示它以简化计算.
3.观察算式找规律
例11 某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分. 87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.
分析与解 若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为
90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1) +2+5+(-2)=1800-1=1799, 平均分为 90+(-1)÷20=89.95.
例12 计算1+3+5+7+…+1997+1999的值.
分析 观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.
解 用字母S表示所求算式,即S=1+3+5+…+1997+1999. ① 再将S各项倒过来写为 S=1999+1997+1995+…+3+1. ② 将①,②两式左右分别相加,得
2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1) =2000+2000+…+2000+2000(500个2000)=2000×500. 从而有 S=500 000.
说明 一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题
3-1=5-3=7-5=…=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.
例13 计算 1+5+5+5+…+5+5的值.
分析 观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.
解 设S=1+5+5+…+5+5, ① 所以5S=5+5+5+…+5+5. ②
2
3
100
101
2
99
100
2
3
99
100
②—①得 4S=5-1,
101
说明 如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决.
例14 计算:
分析 一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式
来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.
解 由于 所以
说明 本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.
练习一
1.计算下列各式的值:
(1)-1+3-5+7-9+11-…-1997+1999; (2)11+12-13-14+15+16-17-18+…+99+100; (3)1991×1999-1990×2000;
(4)472634+472 635-472 633×472 635-472 634×472 636;
2
2
(6)1+4+7+…+244;
2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.
81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.
第二讲 绝对值
绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.
下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.
一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即
绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.
结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.
例1 a,b为实数,下列各式对吗?若不对,应附加什么条件? (1)|a+b|=|a|+|b|;
(2)|ab|=|a||b|;(3)|a-b|=|b-a|; (4)若|a|=b,则a=b; (5)若|a|<|b|,则a<b; (6)若a>b,则|a|>|b|.
解 (1)不对.当a,b同号或其中一个为0时成立. (2)对. (3)对.
(4)不对.当a≥0时成立. (5)不对.当b>0时成立.
相关推荐: