1由题意知,F(2,0),|FO|=|AO|=2.∵点M为FN的中点,PM∥OF,∴|MP|=|FO|=1. 2又|BP|=|AO|=2,∴|MB|=|MP|+|BP|=3.由抛物线的定义知|MF|=|MB|=3,故|FN|=2|MF|=6. x248、(2017新课标1文)设A,B为曲线C:y=上两点,A与B的横坐标之和为4. 4(1)求直线AB的斜率; (2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM?BM,求直线AB的方程. 【解析】(1)设A?x1,y1?,B?x2,y2?,则KAB?x02(2)设M?x0,4?x22x12?y2?y144?x2?x1?1 ??x2?x1x2?x14?y'1?x0?1 ∴x0?2 则A1?2,1? ,又AM⊥? ,则C在M处的切线斜率K?KAB?x?x02?BM,KAMKBMx12x22?1?1?x?2??x2?2?x1x2?2?x1?x2??4y1?1y2?144???1 ?1??1616x1?2x2?2x1?2x2?2即x1x2?2?x1?x2??20?0 又设AB:y=x+m代入x2?4y 得x2?4x?4m?0 ∴x1?x2?4,x1x2??4m -4m+8+20=0∴m=7故AB:x+y=7 x2249.(2017年新课标Ⅱ文)设O为坐标原点,动点M在椭圆C:+y=1上,过M作x轴的垂线,垂足为N,点P2→→满足NP=2NM. (1)求点P的轨迹方程; →→(2)设点Q在直线x=-3上,且OP·PQ=1.证明:过点P且垂直于OQ的直线l过C的左焦点F. →→→→2【解析】(1)设P(x,y),M(x0,y0),则N(x0,0),NP=(x-x0,y),NM=(0,y0).由NP=2NM得x0=x,y0=y. 2x2y2∵M(x0,y0)在C上,∴+=1,∴点P的轨迹方程为x2+y2=2. 22→→→→(2)由题意知F(-1,0).设Q(-3,t),P(m,n),则OQ=Q(-3,t),PF=(-1-m,-n),OQ·PF=3+3m-tn, →→→→OP=(m,n),PQ=(-3-m,-tn).由OP·PQ=1得-3m-m2+tn-n2=1, 第 11 页(共 12 页)
→→→→由(1)知m2+n2=2,∴3+3m-tn=0.∴OQ·PF=0,即OQ⊥PF.又过点P存在唯一直线垂直于OQ, ∴过点P且垂直于OQ的直线l过C的左焦点F.
第 12 页(共 12 页)
相关推荐: