学习改变命运,思考成就未来! www.aoshu.cn 联系电话:62164116
2)这个数是2,3,4,5,6,7,10,11,12,13,14,15的公倍数 由于上述十二个数的最小公倍数是60060
因为60060是一个五位数,而十二个数的其他公倍数均不是五位数,所以1号同学写的数就是60060。
4 数论的综合题型
【例11】(★★★★)某住宅区有12家住户,他们的门牌号分别是1,2,…,12.他们的电话号码依次是12个连续的六位自然数,并且每家的电话号码都能被这家的门牌号整除,已知这些电话号码的首位数字都小于6,并且门牌号是9的这一家的电话号码也能被13整除,问:这一家的电话号码是什么数?
【解】:
设第一户电话号是x+1,第二户x+2,….第12户电话号x+12
根据条件得x+i是i的倍数(i=1,2,…,12)因此x是1,2,….12的公倍数 [1,2,…..12]=27720 所以x=27720m
27720m+9是13的倍数,27720除以13余数为4 所以4m+9是13的倍数m=1,14,27….
第一家电话号码是27720m+1 m取14合适;
因此第一家电话号码是27720*14+1=388081
[拓展]:写出连续的11个自然数,要求第1个是2的倍数,第二个是3的倍数?第11个是12的倍数?
【例12】(★★★★)有15位同学,每位同学都有编号,它们是1号到15号。1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说“这个数能被3整除”,??,依次下去,每位同学都说,这个数能被他的编号数整除,1号作了一一验证,只有编号相邻的两位同学说得不对,其余同学都对,问:(1)说得不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是五位数,请求出这个数。(写出解题过程)
【解】:1)首先可以断定编号是2,3,4,5,6,7号的同学说的一定都对。不然,其中说的不对的编号乘以2后所有编号也将说得不对,这样就与“只有编号相邻的两位同学说的不对”不符合。因此,这个数能被2,3,4,5,6,7都整除。
其次利用整除性质可知,这个数也能被2×5,3×4,2×7都整除,即编号为10,12,14的同学说的也对。从而可以断定说的不对的编号只能是8和9。
2)这个数是2,3,4,5,6,7,10,11,12,13,14,15的公倍数
由于上述十二个数的最小公倍数是60060
因为60060是一个五位数,而十二个数的其他公倍数均不是五位数,所以1号同学写的数就是60060。
小结
本讲主要接触到以下几种典型题型:
学而思教育 07年寒假小升初专项训练班讲义 六年级精英班 第十讲 教师版 Page 100
学习改变命运,思考成就未来! www.aoshu.cn 联系电话:62164116
1)数的整除。 参见例1,2,3,4 2)质数与合数(分解质因数)。参见例5,6 3)约数和倍数。 参见例7,8,9,10 4)数论的综合题型。 参见例11,12
【课外知识】
打开另一扇心窗
很久以前,在意大利的庞贝古城里,一个普通人家出生了一个叫莉蒂雅的女孩。 莉蒂雅自小双目
失明,但她并不怨天怨地,也没有垂头丧气,反而热爱生活,对生活充满信心和希望。稍稍长大后,她像常人一样劳动,靠卖花自食其力。不久,维苏威火山爆发,庞贝城面临一次大的灾难,整座城市被笼罩在浓烟尘埃之中。浓密的火山灰,遮掩了太阳、月亮和星星,大地一片漆黑。黑暗中,惊慌失措的居民跌跌撞撞地根本找不到出路,人们好像生活在人间的地狱中。莉蒂雅虽然看不见,但这些年来,她走街串巷在城里卖花,对城市的各条道路了如指掌。她就靠自己的触觉和听觉找到了生路,不但救了自己的家人,还救了许多市民。
后来,莉蒂雅的事迹一直被后人所传颂,并出现在很多的文学作品中。
启迪:莉蒂雅的不幸反而成了她的大幸,她的残疾反而成了她的财富。不要总以为自己是最倒霉的。其实,上苍很公平。有时候,命运向你关闭这一心窗的同时,又为你开启了另一心窗,同样可以享受人生的快乐
作业题
(注:作业题--例题类型对照表,供参考)
题1,4—类型1;题2,6—类型3;题3,5,8—类型2;题7—类型2 1.(★★)在1~100这100个自然数中,所有不能被9整除的数的和是多少? 解:1+2+??+100=5050
9+18+27+??+99=9×(1+2+??+11)=495
随意1-100中所有不能被9整除的数的和是5050-495=4555
2.(★★)某班学生不超过60人,在一次数学测验中,分数不低于90分的人数占数占
1217
,得80~89分的人
,得70~79分得人数占
1713,那么得70分以下的有________人。
解:有、
12、
13,说明总人数一定为7的倍数、2的倍数、3的倍数,故为[7、2、3]=42的倍数;
又由于人数不超过60人,故这班的人数只能为42人。
学而思教育 07年寒假小升初专项训练班讲义 六年级精英班 第十讲 教师版 Page 101
学习改变命运,思考成就未来! www.aoshu.cn 联系电话:62164116
从而70分以下的有:42×?1???17?12?1??=1人。 3?
3.(★★)自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有_______个。
解:枚举法:23,37,53,73,,有4个
4. (★★★)三个自然数,其中每一个数都不能被另外两个数整除,而其中任意两个数的乘积却能被第三个数整除,那么这样的三个自然数的和的最小值是多少? 解:这三个自然数最小是6,10,15(分别是2×3,2×5,3×5) 和的最小值为31。
5、(★★★)五个连续偶数之和是完全平方数,中间三个偶数之和是立方数(即一个整数的三次方),这样一组数中的最大数的最小值是多少? 解:设中间一个数为2x 那么5个数的和为10x=m^2 中间3个数的和为6x=n^3
设x=2^p × 3^q × 5^r
再根据一个数是完全平方数等价于它的各个质因子的幂都是偶数,一个数是立方数等价于他的各个质因子的幂都是3的倍数可以求得p=5,q=2,r=3 X=36000
因此所求为2x+4=72004
6、(★★)一个数减去100是一个平方数,减去63也是一个平方数,问这个是多少?
解:A2-B2=(A+B)(A-B)=37=37×1,考虑同奇偶性,可知A=19,B=18,这样这个数为461。
7、(★★★)从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______. 【来源】北京市第七届“迎春杯”决赛第二题第4题
【解】第一次报数后留下的同学,他们最初编号都是11的倍数;第二次报数后留下的同学,他们最初编号都是112=121的倍数;第三次报数后留下的同学,他们最初编号都是113=1331的倍数.因此,第三次报数后留下的同学中,从左边数第一个人的最初编号是1331.
8、(★★★)有1997个奇数,它们的和等于它们的乘积.其中只有三个数不是l,而是三个不同的质数.那么,这样的三个质数可以是 、 、 . 【解】设a、b、c为三个不同的质数,根据题意
1994+a+b+C=a·b·c.
取a=3,b=5,得1994+3+5+c=15c,解出c=143不是质数; 取a=3,b=7,得1994+3+7+c=21c,解出c=501不是整数; 5学而思教育 07年寒假小升初专项训练班讲义 六年级精英班 第十讲 教师版 Page 102
学习改变命运,思考成就未来! www.aoshu.cn 联系电话:62164116
取a=5,b=7,得1994+5+7+c=35C,解出c=59. 故5、7、59是满足题意的三个质数.
学而思教育 07年寒假小升初专项训练班讲义 六年级精英班 第十讲 教师版
Page 103
相关推荐: