; (3)由图标可得,停车位数量与单日最多接待游客量成正比例关系,比值约为500, 则第十届园博会大约需要设置的停车位数量约为:500×7.4≈3.7×10.. 3故答案为:0.03;3.7×10. 22. 解答: 3解:(1)四个等腰直角三角形的斜边长为a,则斜边上的高为a, 每个等腰直角三角形的面积为:a?a=a, 则拼成的新正方形面积为:4×a=a,即与原正方形ABCD面积相等 ∴这个新正方形的边长为a. 故填空答案为:a. (2)∵四个等腰直角三角形的面积和为a,正方形ABCD的面积为a, ∴S正方形MNPQ=S△ARE+S△DWH+S△GCT+S△SBF=4S△ARE=4××1=2. (3)如答图1所示,分别延长RD,QF,PE交FA,EC,DB的延长线于点S,T,W. 222222 由题意易得:△RSF,△QEF,△PDW均为底角是30°的等腰三角形,其底边长均等于△ABC的边长. 不妨设等边三角形边长为a,则SF=AC=a. 如答图2所示,过点R作RM⊥SF于点M,则MF=SF=a, 在Rt△RMF中,RM=MF?tan30°=a×∴S△RSF=a?a=a. 2=a, 过点A作AN⊥SD于点N,设AD=AS=x, 则AN=AD?sin30°=x,SD=2ND=2ADcos30°=∴S△ADS=SD?AN=? ∵三个等腰三角形△RSF,△QEF,△PDW的面积和=3S△RSF=3×∴S△RPQ=S△ADS+S△CFT+S△BEW=3S△ADS, ∴=3×x,得x=,解得x=或x=22x, x?x=x. 2a=2a,正△ABC的面积为2a, 2(不合题意,舍去) ∴x=,即AD的长为. 故填空答案为:. 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解答: 解:(1)当x=0时,y=﹣2, ∴A(0,﹣2), 抛物线的对称轴为直线x=﹣=1, ∴B(1,0); (2)易得A点关于对称轴直线x=1的对称点A′(2,﹣2), 则直线l经过A′、B, 设直线l的解析式为y=kx+b(k≠0), 则解得, , 所以,直线l的解析式为y=﹣2x+2; (3)∵抛物线的对称轴为直线x=1, ∴抛物线在2<x<3这一段与在﹣1<x<0这一段关于对称轴对称, 结合图象可以观察到抛物线在﹣2<x<﹣1这一段位于直线l的上方,在﹣1<x<0这一段位于直线l的下方, ∴抛物线与直线l的交点的横坐标为﹣1, 当x=﹣1时,y=﹣2×(﹣1)+2=4, 所以,抛物线过点(﹣1,4), 当x=﹣1时,m+2m﹣2=4, 解得m=2, ∴抛物线的解析式为y=2x﹣4x﹣2. 2 24. 解答: 解:(1)∵AB=AC,∠A=α, ∴∠ABC=∠ACB=(180°﹣∠A)=90°﹣α, ∵∠ABD=∠ABC﹣∠DBC,∠DBC=60°, 即∠ABD=30°﹣α; (2)△ABE是等边三角形, 证明:连接AD,CD,ED, ∵线段BC绕B逆时针旋转60°得到线段BD, 则BC=BD,∠DBC=60°, ∵∠ABE=60°, ∴∠ABD=60°﹣∠DBE=∠EBC=30°﹣α,且△BCD为等边三角形, 在△ABD与△ACD中 ∴△ABD≌△ACD, ∴∠BAD=∠CAD=∠BAC=α, ∵∠BCE=150°, ∴∠BEC=180°﹣(30°﹣α)﹣150°=α=∠BAD, 在△ABD和△EBC中 ∴△ABD≌△EBC, ∴AB=BE, ∴△ABE是等边三角形; (3)∵∠BCD=60°,∠BCE=150°, ∴∠DCE=150°﹣60°=90°, ∵∠DEC=45°, ∴△DEC为等腰直角三角形, ∴DC=CE=BC, ∵∠BCE=150°, ∴∠EBC=(180°﹣150°)=15°, ∵∠EBC=30°﹣α=15°, ∴α=30°. 25. 解答: 解:(1)①如图1所示,过点E作⊙O的切线设切点为R, ∵⊙O的半径为1,∴RO=1, ∵EO=2, ∴∠OER=30°, 根据切线长定理得出⊙O的左侧还有一个切点,使得组成的角等于30°, ∴E点是⊙O的关联点, ∵D(,),E(0,﹣2),F(2,0), ∴OF>EO,DO<EO, ∴D点一定是⊙O的关联点,而在⊙O上不可能找到两点与点F的连线的夹角等于60°, 故在点D、E、F中,⊙O的关联点是D,E; 故答案为:D,E; ②由题意可知,若P要刚好是⊙C的关联点, 需要点P到⊙C的两条切线PA和PB之间所夹的角为60°, 由图2可知∠APB=60°,则∠CPB=30°, 连接BC,则PC==2BC=2r, ∴若P点为⊙C的关联点,则需点P到圆心的距离d满足0≤d≤2r; 由上述证明可知,考虑临界点位置的P点, 如图3,点P到原点的距离OP=2×1=2, 过点O作l轴的垂线OH,垂足为H,tan∠OGF=∴∠OGF=60°, ∴OH=OGsin60°===, ; sin∠OPH==, ∴∠OPH=60°, 可得点P1与点G重合, 过点P2作P2M⊥x轴于点M, 可得∠P2OM=30°, ∴OM=OP2cos30°=, 从而若点P为⊙O的关联点,则P点必在线段P1P2上, ∴0≤m≤; (2)若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点; 考虑临界情况,如图4, 即恰好E、F点为⊙K的关联时,则KF=2KN=EF=2, 此时,r=1, 故若线段EF上的所有点都是某个圆的关联点,这个圆的半径r的取值范围为r≥1.
相关推荐: