一、选择题
1.平面α∥平面β,直线l∥α,则( ) A.l∥β C.l∥β或l?β [答案] C
[解析] 假设l与β相交,又α∥β,则l与α相交,又l∥α,则假设不成立,则l∥β或l?β.
2.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有( )
A.4条 C.8条 [答案] D
B.6条 D.12条 B.l?β D.l,β相交
[解析] 如图,在A1A和四边形BB1D1D之间的四条棱的中点F、E、G、H组成的平面中,有EF、FG、GH、HE、EG、HF共6条直线与平面BB1D1D平行,另一侧还有6条,共12条.故选D.
3.有一正方体木块如图所示,点P在平面A′C′内,棱BC平行于平面A′C′,要经过P和棱BC将木料锯开,锯开的面必须平整,有N种锯法,则N为( )
A.0 C.2 [答案] B
[解析] ∵BC∥平面A′C′,∴BC∥B′C′,在平面A′C′上过P作EF∥B′C′,则EF∥BC,∴沿EF、BC所确定的平面锯开即可.又由于此平面唯一确定,∴只有一种方法,故选B.
4.已知a,b表示直线,α,β,γ表示平面,则下列推理正确的是( )
A.α∩β=a,b?α?a∥b B.α∩β=a,a∥b?b∥α且b∥β C.a∥β,b∥β,a?α,b?α?α∥β D.α∥β,α∩γ=a,β∩γ=b?a∥b [答案] D
[解析] 选项A中,α∩β=a,b?α,则a,b可能平行也可能相
B.1 D.无数
交,故A不正确;
选项B中,α∩β=a,a∥b,则可能b∥α且b∥β,也可能b在平面α或β内,故B不正确;
选项C中,a∥β,b∥β,a?α,b?α,根据面面平行的判定定理,再加上条件a∩b=A,才能得出α∥β,故C不正确;
选项D为面面平行性质定理的符号语言,故选D.
5.设平面α∥平面β,A∈α,B∈β,C是AB的中点,当点A、B分别在平面α,β内运动时,所有的动点C( )
A.不共面
B.当且仅当点A、B分别在两条直线上移动时才共面
C.当且仅当点A、B分别在两条给定的异面直线上移动时才共面
D.无论点A,B如何移动都共面 [答案] D
6.已知两条直线m,n两个平面α,β,给出下面四个命题: ①α∩β=m,n?α?m∥n或者m,n相交; ②α∥β,m?α,n?β?m∥n; ③m∥n,m∥α?n∥α;
④α∩β=m,m∥n?n∥β且n∥α. 其中正确命题的序号是( ) A.① C.④ [答案] A
7.在三棱柱ABC-A1B1C1中,E、F分别是AC1、CB1的中点,P是C1B1的中点,则与平面PEF平行的三棱柱的棱的条数是( )
B.①④ D.③④
A.3 C.5 [答案] C
B.4 D.6
8.平面α∥平面β,△ABC,△A′B′C′分别在α、β内,线段AA′,BB′,CC′共点于O,O在α、β之间.若AB=2,AC=1,∠BAC=60°,OA
3
A.9 23C.9
OA′=32,则△A′B′C′的面积为( )
3B.3 23D.3
[答案] C
[解析] 如图∵α∥β,
∴BC∥B′C′,AB∥A′B′,AC∥A′C′,∴△ABC∽△A′B′C′,
ABOA33且由==2知相似比为2,
A′B′OA′
相关推荐: