所以 P(数字之和大于4)=
22.(本小题满分8分)
82
=. ················· 8分 123
解:过B作BE⊥CD垂足为E,设BE=x米, ·············· 1分
B
在Rt△ABE中,tanA=BE
, ········· 2分 AE
AE=
BE tanA =BE tan37° =4
3
x, ·······A C E D (第22题)
在Rt△ABE中,tan∠BCD=BE
CE
, ·······CE=
BE tan∠BCD =x
tan45°
=x, ······∵AC=AE-CE,∴4
3
x-x=150
解得x=450 ················答:小岛B到河边公路AD的距离为450米. ··············23.(本小题满分8分)
解:连接OD,过点O作OH⊥AC,垂足为H. ···············B 由垂径定理得AH=1
2
AC=3.
2
2
O 在Rt△AOH中,OH=5-3=4. ·········D ∵DE切⊙O于D,
A H C E ∴OD⊥DE,∠ODE=90°. ············(第23题)
∵AD平分∠BAC,∴∠BAD=∠CAD. ∵OA=OD,∴∠BAD=∠ODA,
∴∠CAD=∠ODA, ∴OD∥AC. ··········∴∠E=180°-90°=90°. 又OH⊥AC,∴∠OHE=90°,
∴四边形ODEH为矩形. ··············∴DE=OH=4. ··················24.(本小题满分9分)
(1)x-2=0;(答案不唯一) ·····················(2)解方程3-x=2x得x=1,解方程3+x=2(x+1
2
)得x=2, ······解不等式组??x?2x?m,2≤m得m<x≤m+2, ··············?x? ∵1,2都是该不等式组的解,
分 分 分
分
分 分
分 分 分 分 分
分 分
分
29
3 4 5 7 8 1 2 3 5 7 8 3 5 7∴0≤m<1. ··························· 9分
25.(本小题满分8分)
(1)由△ABC≌△ADE 且AB=AC,得 ∴AE=AD=AC=AB,∠BAC=∠EAF, ∴ ∠BAE=∠CAF.
∴△ABE≌△ACF, ························ 3分 ∴BE=CF. ··························· 4分 (2)∵四边形ABDF是菱形,∴AB∥DF,
∴∠ACF=∠BAC=45°. ····················· 5分
∵AC=AF,∴∠CAF=90°,即△ACF是以CF为斜边的等腰直角三角形,
∴CF=22. ·························· 7分 又∵DF=AB=2,∴CD=22-2. ················· 8分
26.(本小题满分10分)
(1)图略; ···························· 4分 (2)若k>0,当x<0时,y随x的增大而增大,
当x>0时,y随x的增大而减小; ················· 6分 若k<0,当x<0时,y随x的增大而减小,
当x>0时,y随x的增大而增大; ················· 8分 (3)函数y?kkx的图象向左平移2个单位长度得到函数y?x?2的图象. · 10分 27.(本小题满分13分) (1)∵四边形ABDF是矩形,
∴AB∥CD,
∴∠APD=∠QDP. ························ 1分 ∵∠APD=∠QPD,
∴∠QPD=∠QDP, ························ 2分 ∴DQ=PQ. ··························· 3分 (2)过点Q作QE⊥DP,垂足为E,则DE=1
2DP. ············· 5分
∵∠DEQ=∠PAD=90°,∠QDP=∠APD,
∴△QDE∽△DPA,∴
DQDP=DEAP
, ··················· 6分 ∴AP·DQ=DP·DE=12
2
DP.
在Rt△DAP中,有DP2
=DA2
+AP2
=36+AP2
,
∴AP·DQ=12
(36+AP2
). ···················· 7分
∵点P在AB上,∴AP≤4,
∴AP·DQ≤26,即AP·DQ的最大值为26. ············· 8分
30
相关推荐: