1通过对积分区间作等分分割,并取适当的点集{?i},把定积分看作是对应积分的和的极限,来计算下列定积分: (1)
?110exdx, (2)
?badx(0?a?b). 2x2. 计算下列定积分
ex?e?xdx; (1)?02?(2)(3)
?30tan2xdx;
1??x??dx; ?0?x??9(4)
dx?01?x.
4(5)
?e1e1(lnx)2dx. x3.利用定积分求极限: (1)lim1(1?23???n3); 4n??n(2)lim?n??(3)lim?111????. 222?(n?n)??(n?1)(n?2)1?2?n?1(sin?sin???sin?). n??nnnn 4.证明:若f(x)在[a,b]上可积,[?,?]?[a,b],则f(x)在[?,?]上可积。
5.设f(x),g(x)均为在[a,b]上的有界函数.证明:若仅在[a,b]中有限个点处f(x)?g(x),则当f(x)在[a,b]上可积时,g(x)在[a,b]上可积,且
?baf(x)dx??g(x)dx.
ax??x??x?,x????b6.证明:若f(x)有区间?上有界,则supf(x)?inff(x)?sup|f(x?)?f(x??)|.
nb7.证明:若f(x),g(x)都在[a,b]上可积,则lim||T||?0?f(?i)g(?i)?xi??f(x)g(x)dx.
i?1a8.证明下列不等式: 1?x2?10exdx?e.
2证:函数f(x)?e在[0,1]上连续,由积分第一中值定理:增,故有e?e0?10exdx?e?,其中??[0,1].而函数f(x)?ex在[0,1]严格
222?2?e,即1??edx?e.
011x21sinx?x?dx?.(题有误,应更正为1??dx?) 9.证明:1??00sinxx221
10.证明:3e??4eelnxdx?6. x11.设f(x)在[a,b]上连续,且f(x)不怛为零,证明12.设f(x)与g(x)都在[a,b]上可积,证明:
?ba(f(x))2dx?0.
M(x)?max{f(x),g(x)},m(x)?min{f(x),g(x)}
x?[a,b]x?[a,b]都在[a,b]上可积.
13.证明:若f(x),g(x)都在[a,b]上可积,则lim
||T||?0?f(?i)g(?i)?xi??f(x)g(x)dx.
i?1anb14.设f(t)为连续函数,u(x),v(x)均为可导函数,且可实行复合f?u与f?v,证明:
dv(x)f(t)dt?f(v(x))v?(x)?f(u(x))u?(x). ?u(x)dx15求定积分: (1) (2)
?a0x2a2?x2dx(a?0).
?11(x2?x?1)320dx.
(3)
?e0a01xdx. a?xdx. a?x(4)
??x2?(5)
20cos?d?.
sin??cos?a?pp16. 设f为(??,??)上以p为周期的连续函数.证明对任何实数a,恒有17.设f为连续函数.证明:
???af(x)dx??f(x)dx.
0 (1) (2)
?20f(sinx)dx??2f(cosx)dx.
0??0xf(sinx)dx??2??0f(sinx)dx.
相关推荐: