第一范文网 - 专业文章范例文档资料分享平台

数学分析考试大纲

来源:用户分享 时间:2025/7/23 15:11:43 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

《数学分析》考试大纲

一、 课程性质和目的

《数学分析》是数学系的一门重要基础课,其主要任务是使学生获得数学的基本思想方法和极限论、单元和多元微积分、级数论、反常积分等方面的系统知识。它一方面为后继课程(如《微分方程》、《实变函数》、《概率论与数理统计》及有关的《泛函分析》、《微分几何》等限选课程及《普通物理学》等)提供一些所需的基础理论和知识,另一方面还对提高学生思维能力,开发学生智能加强“三基”(基础知识、基本理论、基本技能)及培养学生独立工作能力等起着重要的作用。

通过本课程教学的主要环节(讲授与讨论、习题课、作业、辅导等),使学生对极限思想和方法有较深的认识和理解,从而有助于培养学生辩证唯物主义基本观点及正确理解《数学分析》的基本概念和论证方法及分析问题和解决问题的能力。

整个课程注重培养学生的数学逻辑及思想方法,训练学生举一反三的能力,在单元函数和多元函数相平行的内容以单元函数为主,引导学生通过独立思考得到多元函数的相应结论。

二、课程内容

充分条件,必要条件,充要条件,绝对值,不等式,函数,单调函数,周期函数,奇偶函数,复合函数,反函数,初等函数,数列极限,数列极限的性质,单调有界数列,子数列,函数极限,函数极限的性质,函数极限与数列极限的关系,两个重要极限,无穷小量与无穷大量,闭区间套定理,上确界与下确界,确界存在定理,有限覆盖定理,致密性定理,柯西

收敛准则,连续,左连续,右连续,间断点,函数在一点连续的性质,中间值定理,有界性定理,最大值与最小值定理,反函数的连续性定理,一致连续性定理,初等函数的连续性,导数,求导法则,微分,微分与导数的关系,高阶导数,高阶微分,参数方程求高阶导数,费尔马定理,洛尔定理,拉格朗日定理,柯西定理,洛必达法则,泰勒公式,单调性判别法,极值,凹凸性,拐点,曲线的渐近线,函数作图,不定积分,换元法,分部积分法,有理函数积分法,三角函数有理式积分,无理函数的积分,平面图形的面积,立体的体积,平面曲线的弧长,曲线的曲率,上极限,下极限,数项级数,正项级数,任意项级数,绝对收敛,条件收敛,无穷乘积,无穷积分,瑕积分,反常积分的收敛与发散,反常积分的计算,柯西主值,函数列,函数项级数,一致收敛,非一致收敛,一致收敛级数的性质,幂级数的收敛域,幂级数的性质,幂级数的展开,富里埃级数,富里埃级数的展开,平面点集,多元函数的极限,多元函数的连续性,偏导数,全微分,方向导数,复合函数的偏导数,一阶全微分形式的不变性,高阶偏导数,高阶全微分,泰勒公式,多元函数的极值,隐函数存在定理,空间曲线的切线与法平面,曲面的切平面与法线,条件极值,含参变量的定积分,含参变量反常积分的一致收敛,含参变量反常积分的分析性质,欧拉积分,二重积分,三重积分,第一型曲线积分,第二型曲线积分,格林公式,平面曲线积分与路径无关的条件,第一型曲面积分,第二型曲面积分,奥高公式,斯托克斯公式。

三、 考试要求

第一章 函数

考试内容:函数 单调函数 周期函数 奇偶函数 复合函数, 反函数 初等函数

考试要求:(1)正确理解和掌握函数的概念和性质,掌握函数的表示方法,并会建立简单应用问题中的函数关系式,了解函数的四则运算,复合函数及反函数的定义;(2)掌握初等函数的性质了解几个常见非初等函数的定义及性质;(3)理解函数的有界性、单调性、周期性、奇偶性等,会对初等函数是否具备这些性质进行验证。 第二、三章 数列极限与函数极限

考试内容:数列极限 数列极限的性质 单调有界数列 子数列 函数极限 函数极限的性质 函数极限与数列极限的关系 两个重要极限 无穷小量与无穷大量 闭区间套定理 上确界与下确界 确界存在定理 有限覆盖定理 致密性定理 柯西收敛准则

考试要求:(1)理解和掌握数列极限的“ε-N”定义;(2)会用数列极限的“ε-N”定义证明极限的存在性;(3)掌握数列极限的性质,并会证明;(4)会运用极限的四则运算、单调有界定理、两边夹定理、归结原则、柯西收敛准则证明极限的存在性;(5)会运用极限的四则运算、单调有界定理、夹逼定理、归结原则、柯西收敛准则求数列的极限;(6)会运用归结原则、柯西收敛准则证明极限不存在;(7)正确理解和掌握函数极限的严格定义,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系;(8)会用极限的严格定义解决有关问题和证明极限的存在性,对极限不存在的含意会叙述并能正确理解;(9)掌握无穷小量、无穷大量的定义,掌握无穷小量阶的比较方法,会用等价无穷小求极限;

(10)会用四则运算性质、复合运算性质、两个重要极限来计算函数极限;(11)理解闭区间套定理、确界存在定理、有限覆盖定理、致密性定理、柯西收敛准则的条件和结论,理解这些定理的含意及其关系,熟练掌握各定理的证明方法。 第四章 连续函数

考试内容:连续 左连续 右连续 间断点 函数在一点连续的性质 中间值定理 有界性定理 最大值与最小值定理 反函数的连续性定理 一致连续性定理 初等函数的连续性

考试要求:(1)理解函数连续性的概念(含左连续与右连续),区间上函数连续的概念、间断点及其分类等概念;(2)对一般的函数,特别是初等函数会判别函数间断点的类型;(3)掌握函数在连续点的局部性质;(4)掌握闭区间上连续函数的性质(有界性定理、最大值与最小值定理、介值定理、反函数的连续性定理、一致连续性定理),并会应用这些性质;(5)理解闭区间上连续函数性质的证明思路和证明方法;(6)熟练掌握一致连续的概念,并会证明函数在某区间上的一致连续性与非一致连续性;(7)了解初等函数的连续性,并会应用这些性质求极限。 第五章 导数和微分

考试内容:导数 求导法则 微分 微分与导数的关系 高阶导数 高阶微分 参数方程求高阶导数

考试要求:(1)理解导数的定义及其几何、物理意义;(2)掌握可导与连续的关系;(3)熟练掌握求导运算的四则运算法则、复合函数求导法则及初等函数求导公式;(4)会求参数方程所决定函数的导数;(5)会求

搜索更多关于: 数学分析考试大纲 的文档
数学分析考试大纲.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c26l3t45usf9uewu2sog9_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top