【分析】(1)根据三角形的中位线的性质得到DF∥BC,EF∥AB,根据平行四边形的判定定理即可得到结论;
(2)根据直角三角形的性质得到DF=DB=DA=AB=3,推出四边形BEFD是菱形,于是得到结论.
【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点, ∴DF∥BC,EF∥AB, ∴DF∥BE,EF∥BD, ∴四边形BEFD是平行四边形;
(2)解:∵∠AFB=90°,D是AB的中点,AB=6, ∴DF=DB=DA=AB=3, ∵四边形BEFD是平行四边形, ∴四边形BEFD是菱形, ∵DB=3,
∴四边形BEFD的周长为12.
【点评】本题考查了平行四边形的性质和判定,菱形的判定和性质,三角形的中位线的性质,熟练掌握平行四边形的性质是解题的关键.
第 6 页 共 6 页
相关推荐: