第一范文网 - 专业文章范例文档资料分享平台

高中数学选修2-2知识点总结(最全版)

来源:用户分享 时间:2025/7/8 7:28:23 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

高中数学选修2-2知识点总结

第一章、导数

1.函数的平均变化率为

f(x2)?f(x1)f(x1??x)?f(x1)?y?f?? ??x?xx2?x1?x注1:其中?x是自变量的改变量,平均变化率 可正,可负,可零。

注2:函数的平均变化率可以看作是物体运动的平均速度。

2、导函数的概念:函数y?f(x0??x)?f(x0)?y?limf(x)在x?x0处的瞬时变化率是lim,

?x?0?x?x?0?x则称函数y?f(x)在点x0处可导,并把这个极限叫做y?f(x)在x0处的导数,记作f'(x0)或

y|x?x0'f(x0??x)?f(x0)?y?lim,即f(x0)=lim.

?x?0?x?x?0?x'

3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。

4导数的背景(1)切线的斜率;(2)瞬时速度;

5、常见的函数导数 函数 导函数 (1)y?c (2)y?xn?n?N*? (3)y?ax?a?0,a?1? (4)y?ex (5)y?logax?a?0,a?1,x?0? (6)y?lnx (7)y?sinx (8)y?cosx

y'?0 y'?nxn?1 y'?axlna y'?ex 1 xlna1y'? xy'?y'?cosx y'??sinx 6、常见的导数和定积分运算公式:若f?x?,g?x?均可导(可积),则有: 和差的导数运算 ?f(x)?g(x)?'?f'(x)?g'(x) ?f(x)?g(x)?积的导数运算 '?f'(x)g(x)?f(x)g'(x) 特别地:??Cf?x???'?Cf'?x? ?f(x)?f'(x)g(x)?f(x)g'(x)(g(x)?0) ?g(x)??2???g(x)??1??g'(x)特别地:? ?'?2g?x??g?x??'商的导数运算 复合函数的导数 yx??yu??ux? 微积分基本定理 ?f?x?dx?F(a)--F(b) ab(其中F'?x??f?x?) 和差的积分运算 ?ba[f1(x)?f2(x)]dx??f1(x)dx??f2(x)dxaabb 特别地:积分的区间可加性 ?bakf(x)dx?k?f(x)dx(k为常数)ab?baf(x)dx??f(x)dx??f(x)dx(其中a?c?b)accb .用导数求函数单调区间的步骤: ①求函数f(x)的导数f'(x)

②令f'(x)>0,解不等式,得x的范围就是递增区间. ③令f'(x)<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。

7.求可导函数f(x)的极值的步骤:

(1)确定函数的定义域。

(2) 求函数f(x)的导数f'(x) (3)求方程f'(x)=0的根

(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f/(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如

果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值

8.利用导数求函数的最值的步骤:求f(x)在?a,b?上的最大值与最小值的步骤如下: ⑴求f(x)在?a,b?上的极值;

⑵将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点;

9.求曲边梯形的思想和步骤:分割?近似代替?求和?取极限 (“以直代曲”的思想)

10.定积分的性质

根据定积分的定义,不难得出定积分的如下性质: 性质1

?1dx?b?a

ababbbbb性质5 若f(x)?0,x??a,b?,则?f(x)dx?0

①推广:?[f1(x)?f2(x)???fm(x)]dx??f1(x)dx??f2(x)dx????fm(x)

aaaa ②推广:?f(x)dx??f(x)dx??f(x)dx????f(x)dx

aac1ckbc1c2b

11定积分的取值情况:定积分的值可能取正值,也可能取负值,还可能是0.

( l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x轴上方的图形面积;

(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x轴上方图形面积的相反数;

(3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x轴上方图形的面积减去下方的图形的面积.

12.物理中常用的微积分知识(1)位移的导数为速度,速度的导数为加速度。(2)力的积分为功。

第二章、推理与证明知识点

13.归纳推理的定义: 从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。 .......归纳推理是由部分到整体,由个别到一般的推理。 ....

14.归纳推理的思维过程大致如图:

实验、观察 概括、推广 猜测一般性结论 15.归纳推理的特点:

①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。

②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。

③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。

16.类比推理的定义:

根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。 ....

17.类比推理的思维过程

观察、比较 联想、类推 推测新的结论

18.演绎推理的定义:

演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。 ....

19.演绎推理的主要形式:三段论

20.“三段论”可以表示为:①大前题:M是P②小前提:S是M ③结论:S是P。

其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。

21.直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。

22.综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。

23.分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。

要注意叙述的形式:要证A,只要证B,B应是A成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。

24反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。

25.反证法的一般步骤

(1)假设命题结论不成立,即假设结论的反面成立; (2)从假设出发,经过推理论证,得出矛盾; (3)从矛盾判定假设不正确,即所求证命题正确。 ...

高中数学选修2-2知识点总结(最全版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c29nyw9pnqb0flug9bb17_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top