式中h0,h1,h2,Lhn?1是 n个待定常数。由式(9-24)的第一个方程可得输出方程
y?x1?h0u
其余可得(n-1)个状态方程
x1?x2?h1ux2?x3?h3uMxn?1?xn?hn?1u对xn求导数并考虑式(9-22)有
.....
xn?y?h0u.(n)(n?1)?Lhn?1u?(?an?1u(n?1)?an?2y(n?2)(n).?L?a1y?a0y?b0u?L?b1u?b0u)?h0u(n)?h1u(n?1) ?L?hn?1u由式(9-24)将y(n?1).,Ly,y均以xi及u的各阶导数表示,经整理可得 xn??a0x1?a1x2?L?an?2xn?1?an?1xn?(bn?h0)u(n)?(bn?1?h1?an?1b0)u(n?1)?(bn?2?h2?an?1h1?an?2h0)u(n?2)?L?(b1?hn?1?an?1hn?2?an?2hn?3?L?a1h0)u?(b0?an?1hn?1?an?2hn?2?L?a1h1?a0h0)u...
令上式中u的各阶导数项的系数为零,可确定各h 值
h0?bnh1?bn?1?an?1h0h2?bn?2?an?1h1?an?2h0Mhn?1?b1?an?1hn?2?an?2hn?3?L?a1h0记
hn?b0?an?1hn?1?an?2hn?2?La1h1?a0b0.
,故
xn??a0x1?a1x2?L?an?2xn?1?an?1xn?hnu
则式( 9-22 )的向量-矩阵形式的动态方程为
x?Ax?bu,y?cx?du (9-25)
.式中
???A???????a0c??10010L001L??h1???h???2??,b??L? MMMLM???000L1h??n?1???a1?a2L?an?1???hn??L0?,d?h000式(9-22)的状态变量图见图9-8。若输入量中仅含m次导数且m 当bn?0时,我们可以令上述公式中的h0?0得到所需要的结果,也可按如下规则选择另一组状态变量。设 xn?yxi?xi?1?aiy?biu;i?1,2L,n?1.? (9-26) 其展开式为 xn?1?xn?an?1y?bn?1u?y?an?1y?bn?1uxn?2?xn?1?an?2y?bn?2u?y?an?1y?bn?1u?an?2y?bn?2uMx2?x3?a2y?b2u?y(n?2)?an?1y(n?3)?bn?1u(n?3)?an?2y(n?4) ?b?2u(n?4)?L?a2y?b2ux1?x2?a1y?b1u?y(n?1)?an?1y(n?2)?bn?1u(n?2)?an?2y(n?3)?bn?2u(n?3)?L?a1y?b1u......... 故有(n- 1)个状态方程 xn?xn?1?an?1xn?bn?1uxn?1?xn?2?an?2xn?bn?2u Mx2?x1?a1xn?b1u对??1,求导数且考虑式(9-22) ,经整理有 x1??a0xn?b0u ....则式(9-22) ????=0时的动态方程为 x1?Ax?bu,y?cx (9-27) .式中 ?0?1?A??0??M??0001M0LLLL000M1..?a0??b0??b??a1???1??a2?,b??b2?,c??0L???M?M????an?1???bn?1??..01? 例9-4 设二阶系统微分方程为 y?2??y??y?Tu?u 2试求系统状态空间表达式。 解 设状态变量 x1?y?h0u,x2?x1?h1u?y?h0u?h1u, ...故有 y?x1?h0u,x1?x2?h1u .对 ??2求导数且考虑??1,??2及系统微分方程有 x2?y?h0u?h1u?(??y?2??y?Tu?u)?h0u?h1u???2x1?2??x2?h0u?(T?2??h0?h1)u?(1??2h0?2??h1)u.........2..... 令u,u 项的系数为零可得 h0?0,h1?T ...故 x2???2x1?2??x2?(1?2??T)u .系统的状态空间表达式为 ?.??x1???0?.????2??x2?1??x1??T??x1??u,y?10???x??1?2??T??x? ?2?????2????2?(3)由系统传递函数建立状态空间表达式 式(9-22 )所对应的系统传递函数为 Y(s)bnsn?bn?1sn?1?bn?2sn?2?L?b1s?b0 (9-28) G(s)??U(s)sn?an?1sn?1?an?2sn?2?L?a1s?a0应用综合除法有 G(s)?bn??n?1sn?1??n?2sn?2?L??1s??0sn?an?1sn?1?an?2sn?2?L?a1s?a0@bn?N(s) (9-29) D(s)式中bn是直接联系输入、输出量的前馈系数,当G(s)的分母次数大于分子次数时,bn?0, N(s)是严格有理真分式,其系数由综合除法得到为 D(s)?0?b0?a0bn?1?b1?a1bnM ?n?2?bn?2?an?2bn?n?1?bn?1?an?1bn下面介绍由 N(s)导出几种标准形式动态方程的方法 。 D(s)1) N(s)N(s)串联分解的情况。将分解为两部分相串联,如图9-9所示,z为中间变D(s)D(s)量,z,y应满足 z?an?1z(n)(n?1)?L?a1z?a0z?u.. y??n?1z(n?1)?L??1z??0z
相关推荐: