cb2118.解:(Ⅰ)由椭圆的离心率e??1?2?,则a?2c,b?3c,
aa2VB1F1F2的面积的面积S?解得:a?2,b?1?2c?b?3,则bc?3, 23,c?1,
x2y2?椭圆的标准方程:??1;
43(Ⅱ)由(Ⅰ)可知:F(?1,0),由函数的对称性,直线的斜率存在且不为0, 设直线AC:y?k(x?1),且k??3,A?x1,y1?,C?x2,y2?,
?y?k(x?1)?2222223?4kx?8kx?4k?12?0, ,整理得:???xy??1?3?48k24k2?12x1?x2??,x1x2?, 23?4k3?4k2则|AC|?1?k2??x1?x2?2?4x1x2?212?1?k2?3?4k2,
12?1?k?1将?代入上式可得|BD|?, 2k4?3k|AC|3k2?43712?2???2则,k?3, |BD|4k?3444k?3由k?0,则
233714???2?,k2?3 4444k?33
?|AC|?313??134?的取值范围?,???,?. |BD|?415??153?19.解:(1)等比数列?an?的各项均为正数,设公比为q,q?0,
2由2a5,a4,4a6成等差数列,可得2a4?2a5?4a6,即a4?a4q?2a4q,即2q?q?1?0,解得q?(?1212舍去),
32由a4?4a3,可得a1q?4a1q2??2,即a1?n1812a1, 411?1?解得a1?,则an????22?2?数列?bn?的前n项和Sn?n?1?1????; ?2?(n?1)bn,n?N*,且b1?1, 2可得n…2时,Sn?1?n(n?1)n?1nbn?1,又Sn?bn,两式相减可得bn?bn?bn?1, 2222化为
bnnbbb23n??n, ,则bn?b1?2?3?n?1???bn?1n?1b1b2bn?112n?1上式对n?1也成立,则bn?n,n?N*;
?n,n为奇数 ?bn,n为奇数????1?n(2)cn??,
?an,n为偶数???,n为偶数??2?当n为偶数时,前n项和Pn?(1?3?5?L?n?1)??1?1?11????n??(1?n?1)2?2?4161?1?1?n?2?1??n?4?2?n1?; ???1????n?143?2??2?1?4(n?1)21?1???1?n?1??n; 当n为奇数时,Pn?Pn?1?n?43?2?(3)证明:dn???b2n?52n?511, an??2?nnn?1??b2n?1b2n?3(2n?1)(2n?3)?2?2(2n?1)2(2n?3)?
则前n项和
?1?11111Tn?2???????n?n?12(2n?1)2(2n?3)??2?34?54?58?7??1?111?2??n?1?2??, ?63?62(2n?3)?即有Tn?1. 3?20.解:(Ⅰ)f(x)?a?1,(x?0). xa?0时,f?(x)?0,函数f(x)在(0,??)上单调递增.
1??a?x??a?,(x?0). a?0时,f?(x)??x则f(x)在?0,??1??1?,??上单调递减,在???上单调递增.
a?a??(Ⅱ)a?1时,f(x)?x?2?lnx(x?0).
f?(x)?x?1,(x?0). x则f(x)在(0,1)上单调递减,在(1,??)上单调递增.
x?1时,函数f(x)取得极小值即最小值,f(1)??1.
x?0?时,f(x)???;x???时,f(x)???.
?函数f(x)存在两个零点.
(Ⅲ)当a?1时,对?x?(1,??),都有(4k?1?lnx)x?f(x)?1?0(k?Z)成立,
化为:4k?lnx?1nx?3?g(x), xg?(x)?11?(1nx?3)x?1nx?2??. xx2x2令u(x)?x?lnx?2,x?(1,??),
u?(x)?1?1?0, x?函数u(x)在x?(1,??)调递增,
u(3)?1?ln3,u(4)?2?2ln2,
?存在唯一的x0?(3,4),使得u?x0??0,即x0?lnx0?2?0,
函数g(x)在?1,x0?内单调递减,在?x0,???单调递增.
?g(x)min?g?x0??lnx0?lnx0?3x?2?31?713??x0?2?0?x0??1??,?, x0x0x0?34???1Q4k??x0??1?min,k?.
x0???k的最大值为0.
相关推荐: