第一范文网 - 专业文章范例文档资料分享平台

初中数学竞赛辅导资料(2)

来源:用户分享 时间:2025/7/24 7:19:02 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

A B C D E F

5. 写出以a,b,c中的一个或几个字母组成的非同类项(系数为1)的 所有三次单项式 。 6. 除以4余1 两位数共有几个?

7. 从1到10这十个自然数中每次取两个,其和要大于10,共有几种不同取法?

8. 把 边长等于4的正方形各边4等分,連结各对应点成16个小正方形,试用枚举法,计

算共有几个正方形?如果改为 5等分呢?10等分呢? 9. 右图是街道的一部分,纵横各有5条路,如果从 AA到B(只能从北向南,从西向东),有几种走法? 10. 列表讨论不等式ax>b的解集.

11. 一个正整数加上3是5的倍数,减去3是6的倍数, 则这个正整数的最小值是__

B

初中数学竞赛辅导资料(14)

经验归纳法

甲内容提要

1.通常我们把“从特殊到一般”的推理方法、研究问题的方法叫做归纳法。

通过有限的几个特例,观察其一般规律,得出结论,它是一种不完全的归纳法,也叫做经验归纳法。例如 ①由 ( - 1)2 = 1 ,(- 1 )3 =- 1 ,(- 1 )4 = 1 ,……, 归纳出 - 1 的奇次幂是- 1,而- 1 的偶次幂 是 1 。 ②由两位数从10 到 99共 90 个( 9 × 10 ),

三位数从 100 到 999 共900个(9×102), 四位数有9×103=9000个(9×103), …………

归纳出n 位数共有9×10n-1(个)

③ 由1+3=22, 1+3+5=32, 1+3+5+7=42……

推断出从1开始的n个連续奇数的和等于n2等。

可以看出经验归纳法是获取新知识的重要手段,是知识攀缘前进的阶梯。

2. 经验归纳法是通过少数特例的试验,发现规律,猜想结论,要使规律明朗化,必须进行足夠次数的试验。

由于观察产生的片面性,所猜想的结论,有可能是错误的,所以肯定或否定猜想的结论,都必须进行严格地证明。(到高中,大都是用数学归纳法证明)

乙例题

例1 平面内n条直线,每两条直线都相交,问最多有几个交点? 解:两条直线只有一个交点, 1 2 第3条直线和前两条直线都相交,增加了2个交点,得1+2 3 第4条直线和前3条直线都相交,增加了3个交点,得1+2+3 第5条直线和前4条直线都相交,增加了4个交点,得1+2+3+4

………

第n条直线和前n-1条直线都相交,增加了n-1个交点

由此断定n 条直线两两相交,最多有交点1+2+3+……n-1(个), 这里n≥2,其和可表示为[1+(n+1)]×

n?1n(n?1), 即个交点。 22例2.符号n!表示正整数从1到n的連乘积,读作n的阶乘。例如

5!=1×2×3×4×5。试比较3n与(n+1)!的大小(n 是正整数) 解:当n =1时,3n=3, (n+1)!=1×2=2 当n =2时,3n=9, (n+1)!=1×2×3=6 当n =3时,3n=27, (n+1)!=1×2×3×4=24 当n =4时,3n=81, (n+1)!=1×2×3×4×5=120 当n =5时,3n=243, (n+1)!=6!=720 …… 猜想其结论是:当n=1,2,3时,3n>(n+1)!,当n>3时3n<(n+1)!。 例3 求适合等式x1+x2+x3+…+x2003=x1x2x3…x2003的正整数解。

分析:这2003个正整数的和正好与它们的积相等,要确定每一个正整数的值,我们采用经验归纳法从2个,3个,4个……直到发现规律为止。 解:x1+x2=x1x2的正整数解是x1=x2=2

x1+x2+x3=x1x2x3的正整数解是x1=1,x2=2,x3=3

x1+x2+x3+x4=x1x2x3x4的正整数解是x1=x2=1,x3=2,x4=4

x1+x2+x3+x4+x5=x1x2x3x4x5的正整数解是x1=x2=x3=1,x4=2,x5=5

x1+x2+x3+x4+x5+x6=x1x2x3x4x5x6的正整数解是x1=x2=x3=x4=1,x5=2,x6=6 …………

由此猜想结论是:适合等式x1+x2+x3+…+x2003=x1x2x3…x2003的正整数解为x1=x2=x3=……=x2001=1, x 2002=2, x2003=2003。

丙练习14

1. 除以3余1的正整数中,一位数有__个,二位数有__个,三位数有__个,n位数

有____个。 2. 十进制的两位数a1a2可记作10a1+a2,三位数a1a2a3记作100a1+10a2+a3,四位数

a1a2a3a4记作____,n位数___记作______

3. 由13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43

=(___)2 ,13+______=152,13+23+…+n3=( )2。 4. 用经验归纳法猜想下列各数的结论(是什么正整数的平方)

22

①111-222????1??????2=(___);111????1-222??????2=( __)。

10个15个22n个1n个2②11156=(____)2;11??115556=(___)2

????155??????????????9位9位n位n位

5. 把自然数1到100一个个地排下去:123……91011……99100

① 这是一个几位数?②这个数的各位上的各个数字和是多少 6.计算

1111+++…+=

11?1212?1313?1419?20 (提示把每个分数写成两个分数的差)

7.a是正整数,试比较aa+1和(a+1)a的大小. 8.. 如图把长方形的四条边涂上红色,然 后把宽3等分,把长8等分,分成24个 小长方形,那么这24个长方形中,

两边涂色的有__个,一边涂色的有__个,四边都不着色的有__个。

本题如果改为把宽m等分,长n等分(m,n都是大于1的自然数)那么这mn个长方形中,两边涂色的有__个,一边涂色的有__个,四边都不着色的有__个

9.把表面涂有红色的正方体的各棱都4等分,切成64个小正方体,那么这64个中,三面涂色的有__个,两面涂色的有___个,一面涂色的有___个,四面都不涂色的有____个。

本题如果改为把长m等分,宽n等分,高p等分,(m,n,p都是大于2的自然数)那么这mnp个正方体中,三面涂色的有___个,两面涂色的有___个,一面涂色的有____个,四面都不涂色的有_____个。

10.一个西瓜按横,纵,垂直三个方向各切三刀,共分成___块,其中不带皮的有__块。 11.已知两个正整数的积等于11112222,它们分别是___,___。

初中数学竞赛辅导资料(15)

乘法公式

甲内容提要

1. 乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。

公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。

公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。

2. 基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。

完全平方公式:(a±b)2=a2±2ab+b2, 平方差公式:(a+b)(a-b)=a2-b2

立方和(差)公式:(a±b)(a2?ab+b2)=a3±b3 3.公式的推广:

① 多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd

即:多项式平方等于各项平方和加上每两项积的2倍。

② 二项式定理:(a±b)3=a3±3a2b+3ab2±b3

(a±b)4=a4±4a3b+6a2b2±4ab3+b4)

(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5) …………

注意观察右边展开式的项数、指数、系数、符号的规律 ③ 由平方差、立方和(差)公式引伸的公式

(a+b)(a3-a2b+ab2-b3)=a4-b4 (a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5

(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6 …………

注意观察左边第二个因式的项数、指数、系数、符号的规律 在正整数指数的条件下,可归纳如下:设n为正整数

-----

(a+b)(a2n1-a2n2b+a2n3b2-…+ab2n2-b2n1)=a2n-b2n

---

(a+b)(a2n-a2n1b+a2n2b2-…-ab2n1+b2n)=a2n+1+b2n+1 类似地:

-----

(a-b)(an1+an2b+an3b2+…+abn2+bn1)=an-bn 4. 公式的变形及其逆运算

由(a+b)2=a2+2ab+b2 得 a2+b2=(a+b)2-2ab

由 (a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得 a3+b3=(a+b)3-3ab(a+b)

由公式的推广③可知:当n为正整数时 an-bn能被a-b整除, a2n+1+b2n+1能被a+b整除,

a2n-b2n能被a+b及a-b整除。

乙例题

例1. 己知x+y=a xy=b

求 ①x2+y2 ②x3+y3 ③x4+y4 ④x5+y5 解: ①x2+y2=(x+y)2-2xy=a2-2b

②x3+y3=(x+y)3-3xy(x+y)=a3-3ab

③x4+y4=(x+y)4-4xy(x2+y2)-6x2y2=a4-4a2b+2b2 ④x5+y5=(x+y)(x4-x3y+x2y2-xy3+y4) =(x+y)[x4+y4-xy(x2+y2)+x2y2] =a[a4-4a2b+2b2-b(a2-2b)+b2] =a5-5a3b+5ab2

例2. 求证:四个連续整数的积加上1的和,一定是整数的平方。 证明:设这四个数分别为a, a+1, a+2, a+3 (a为整数)

a(a+1)(a+2)(a+3)+1=a(a+3)(a+1)(a+2)+1=(a2+3a)(a2+3a+2)+1 =(a2+3a)2+2(a2+3a)+1=(a2+3a+1)2 ∵a是整数,整数的和、差、积、商也是整数 ∴a2+3a+1是整数 证毕 例3. 求证:2222+3111能被7整除

证明:2222+3111=(22)111+3111=4111+3111 根据 a2n+1+b2n+1能被a+b整除,(见内容提要4) ∴4111+3111能被 4+3整除 ∴2222+3111能被7整除

例4. 由完全平方公式推导“个位数字为5的两位数的平方数”的计算规律 解:∵(10a+5)2=100a2+2×10a×5+25=100a(a+1)+25

∴“个位数字为5的两位数的平方数”的特点是:幂的末两位数字是底数个位数字5的平方,幂的百位以上的数字是底数十位上数字乘以比它大1的数的积。 如:152=225 幂的百位上的数字2=1×2), 252=625 (6=2×3),

352=1225 (12=3×4) 452=2025 (20=4×5) ……

丙练习15 1. 填空:

①a2+b2=(a+b)2-_____ ②(a+b)2=(a-b)2+___ ③a3+b3=(a+b)3-3ab(___) ④a4+b4=(a2+b2)2-____ ,⑤a5+b5=(a+b)(a4+b4)-_____ ⑥a5+b5=(a2+b2)(a3+b3)-____ 2. 填空:

①(x+y)(___________)=x4-y4 ②(x-y)(__________)=x4-y4

③(x+y)( ___________)=x5+y5 ④(x-y)(__________)=x5-y5 3.计算:

①552= ②652= ③752= ④852= ⑤952= 4. 计算下列各题 ,你发现什么规律

⑥11×19= ⑦22×28= ⑧34×36= ⑨43×47= ⑩76×74= 5..已知x+

1111=3, 求①x2+2 ②x3+3 ③x4+4的值 xxxx

6.化简:①(a+b)2(a-b)2

②(a+b)(a2-ab+b2)

③(a-b)((a+b)3-2ab(a2-b2)

④(a+b+c)(a+b-c)(a-b+c)(-a+b+c)

7.己知a+b=1, 求证:a3+b3-3ab=1 8.己知a2=a+1,求代数式a5-5a+2的值 9.求证:233+1能被9整除

10.求证:两个连续整数的积加上其中较大的一个数的和等于较大的数 的平方

11.如图三个小圆圆心都在大圆的直径上,它们 的直径分别是a,b,c

① 求证:三个小圆周长的和等于大圆的周长 bc② 求:大圆面积减去三个小圆面积和的差。 a

初中数学竞赛辅导资料(16)

整数的一种分类

甲内容提要

1. 余数的定义:在等式A=mB+r中,如果A、B是整数,m是正整数, r为小于m的非负整数,那么我们称r是A 除以m的余数。

即:在整数集合中 被除数=除数×商+余数 (0≤余数<除数) 例如:13,0,-1,-9除以5的余数分别是3,0,4,1 (∵-1=5(-1)+4。 -9=5(-2)+1。) 2. 显然,整数除以正整数m ,它的余数只有m种。

例如 整数除以2,余数只有0和1两种,除以3则余数有0、1、2三种。

搜索更多关于: 初中数学竞赛辅导资料(2) 的文档
初中数学竞赛辅导资料(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2er8e50nnn8c83h0epna2cg5h8inz6016cc_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top