第二章 地下水运动的基本微分方程及求解
条件
一、填空题
1. 渗流连续方程是 质量守恒定律 在 地下水运动 中的具体表现。 2. 地下水运动基本微分方程实际上是 地下水水量均衡 方程,方程的左端表示单位时间内从水平方向和垂直方向进入单元含水层内的净水量,右端表示单元含水层在单位时间内 质量变化量 。
3. 越流因素B越大,则说明弱透水层的厚度 越大 ,其渗透系数 越小 ,越流量就越小。
4. 单位面积(或单位柱体)含水层是指 底面积为一个单位 ,高等于 含水层厚度 柱体含水层。
5. 在渗流场中边界类型主要分为 水头边界 、流量边界以及 混合边界 。
二、判断题
1. 地下水连续方程和基本微分方程实际上都是反映质量守恒定律。(√) 2. 潜水和承压水含水层的平面二维流基本微分方程都是反映单位面积含水层的水量均方程。(√ )
3. 在潜水含水层中当忽略其弹性释放水量时,则所有描述潜水的非稳定流方程都与其稳定流方程相同。(×)
4. 越流因素B和越流系数σ都是描述越流能力的参数。(√)
5. 在实际计算中,如果边界上的流量和水头均已知,则该边界既可作为第一类边界,也可作为第二类边界处理。(√)
6. 凡是边界上存在着河渠或湖泊等地表水体时,都可以将该边界作为第一类边界处理。(×)
7. 同一时刻在潜水井流的观测孔中,测得的平均水位降深值总是大于该处潜水面的降深值。(√)
三、分析建模题
1. 一口井位于无限分布的均质、各向同性潜水含水层中,初始时刻潜水水位在水平不透水底板以上高度为H0(x,y),试写出下列两种情况下地下水流向井的非稳定流数学模型(已知水流为二维非稳定流)。
(1)井的抽水量Qw保持不变; 解:数学模型如下
???H????H?QW??HH??H??K?K?t;(x,y)∈D,t≥0 ??x??x?y?y????① H(x,y,0)=H0(x,y);(x,y)∈D,t=0 ② H(x,y,t)|Γ1=H0(x,y);(x,y)∈Γ1,t>0 ③ T?H?n???WQ;(x,y)∈Γw,t>0(Γw为井壁) 2?rW(2)井中水位Hw保持不变。 解:数学模型如下
???H????H???H;(x,y)∈D,t≥0 H??H?????x??x??y??y?K?t① H(x,y,0)=H0(x,y);(x,y)∈D,t=0 ② H(x,y,t)|Γ1=H0(x,y);(x,y)∈Γ1,t>0 ③ H(x,y,t)|ΓW=Hw;(x,y)∈ΓW,t>0(Γw为井中)
2. 图2-1为某地供水水源地的平面图和水文地质剖面图,已知其开采强度为ε,
试根据图示写出开采过程中地下水非稳定流的数学模型。
解:数学模型如下
???H????H??H;(x,y)∈D,t≥0 KH?KH?W?????????x??x??y??y??t④ H(x,y,0)=H0(x,y);(x,y)∈D,t=0
⑤ H(x,y,t)|Γ1=f(x,y,t);(x,y)∈Γ1,t>0(Γ为河流边界) ⑥
?H?n?0;(x,y)∈ΓW,t>0(Γw为隔水边界)
?W
相关推荐: