问题导学
一、向量在平面几何中的应用
活动与探究1 如图所示,若D是△ABC内的一点,且AB2
-AC2
=DB2-DC2
.
求证:AD⊥BC.
1
迁移与应用
如图,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,M为CE的中点,用向量的方法证明:
(1)DE∥BC;
(2)D,M,B三点共线.
2
(1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算.
(2)要掌握向量的常用知识:①共线;②垂直;③模;④夹角;⑤向量相等则对应坐标相等.
二、向量在物理中的应用
活动与探究2
在风速为75(6-2)km/h的西风中,飞机以150 km/h的航速向西北方向飞行,求没有风时飞机的航速和航向.
3
迁移与应用
如图,在细绳O处用水平力F2缓慢拉起所受重力为G的物体,绳子与铅垂方向的夹角为θ,绳子所受到的拉力为F1.
求:(1)|F1|,|F2|随角θ的变化而变化的情况; (2)当|F1|≤2|G|时,角θ的取值范围.
4
相关推荐: