第一范文网 - 专业文章范例文档资料分享平台

自动控制理论第四版课后习题详细解答答案(夏德钤翁贻方版)

来源:用户分享 时间:2025/7/28 17:00:48 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

如图,相角裕度和增益裕度都为正,系统稳定。 (2)G(j?)H(j?)?2

(j?)2(0.1j??1)(10j??1)解:命令如下: >> s=tf('s');

>> G=2/((s^2)**s+1)*(10*s+1)); >> margin(G);

如图,增益裕度无穷大,相角裕度-83,系统不稳定。

5-7 已知最小相位系统的开环对数幅频特性的渐近线如图所示,试写出系统的开环传递函数,并汇出对应的对数相频曲线的大致图形。 (a) 解:低频段由20lgK?10得,K?10

?=2s?1处,斜率下降20dB/dec,对应惯性环节

10。

0.5s?11。

0.5s?1由上可得,传递函数G?s??相频特性?(?)??arctg0.5?。 汇出系统的相频特性曲线如下图所示。

(b) 解:低频段斜率为-20dB/dec,对应积分环节。

1s?=2s?1处,斜率下降20dB/dec,对应惯性环节

1。

0.5s?1?1在剪切频率?c?2.8s处,

K?c1?0.5?c22?1,解得K?4.8

传递函数为:G(s)?4.8

s(0.5s?1)(c) 低频段斜率为-40dB/dec,为两个积分环节的叠加

1; s2?1?0.5s?1处,斜率上升20dB/dec,对应一阶微分环节2s?1; ?2?2s?1处,斜率下降20dB/dec,对应一阶惯性环节

传递函数形式为:G(s)?1

0.5s?1K(2s?1) 2s(0.5s?1)2图中所示Bode图的低频段可用传递函数为K/s来描述,则其幅频特性为K/?。取对数,得L1(?)?20lgK?20lg?。

同理,Bode图中斜率为-20dB/dec的中频段可用K1/s来描述,则其对数幅频特性为

22L2(?)?20lgK1?20lg?。由图有,L2(?c)?0dB,则有K1??c。

再看图,由L1(?1)?L2(?1)可解得K??1??c?0.5 综上,系统开环传递函数为G(s)?0.5(2s?1) 2s(0.5s?1)(参考李友善做法)

系统相频特性:?(?)??180?arctg2??arctg0.5? 曲线如下:

5-8 设系统开环频率特性的极坐标图如图5-T-2所示,试判断闭环系统的稳定性。 (a) 解:系统开环稳定,奈氏图包围(-1,0j)点一次,P≠0,所以闭环系统不稳定。 (b) 解:正负穿越各一次,P=2(N+-N-)=0,闭环系统稳定。

(c) 闭环系统稳定。 (d) 闭环系统稳定。

2e??s?5-9根据系统的开环传递函数G(s)H(s)绘制系统的伯德图,并确s(1?s)(1?0.5s)定能使系统稳定之最大?值范围。

?1解:经误差修正后的伯德图如图所示。从伯德图可见系统的剪切频率?c?1.15s,??0时,

在剪切频率处系统的相角为

?(?c)??90??arctg?c?arctg0.5?c??168.9?

由上式,滞后环节在剪切频频处最大率可有11.1的相角滞后,即

?180????11.1?

解得??0.1686s。因此使系统稳定的最大?值范围为0???0.1686s。

5-10 已知系统的开环传递函数为

G(s)H(s)?K

s(1?s)(1?3s)试用伯德图方法确定系统稳定的临界增益K值。 解:由G?s?H?s??K1知两个转折频率?1?rad/s,?2?1rad/s。令

s?1?s??1?3s?3

自动控制理论第四版课后习题详细解答答案(夏德钤翁贻方版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2o7744u6339x6b742rz56u75f0b3w101d7x_11.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top