第2章 门 电 路
【教学目标】
通过本章的学习,熟悉数字电路中常用开关器件(二极管、三极管与场效应管)的开关特性,了解分立元件逻辑门电路的一般结构和逻辑功能。重点掌握CMOS与TTL集成逻辑门电路的结构、工作原理与性能。在此基础上全面掌握集成逻辑门的使用方法,为后续进行数字电路分析与设计打下基础。
本章首先介绍三种器件的开关工作特性以及用三种器件组成的基本逻辑门电路的逻辑功能。2.3节和2.4节分别介绍目前广泛使用的TTL门电路和CMOS门电路,重点讨论两种逻辑电路的外部特性,为实际使用这些器件打下必要的基础。本章系统讲述了数字电路的基本逻辑单元电路——门电路,包括与门、或门、非门、与非门、或非门、与或非门、异或门、三态门、OC门、OD门等,它们属于小规模集成电路。
概 述
在数字系统中,目前广泛使用了半导体集成电路。数字集成电路是采用外延生长、光刻、氧化物生成及离子注入等技术,将晶体管、电阻、电容等元件和内部电路连线一起做在一块半导体基片上构成的完整的电路单元。它通常封装在外壳内,做成独立的器件。其中,用以实现基本逻辑运算和复合运算的单元电路称为门电路。
数字集成电路按其内部有源器件的不同可以分为两类:一类是绝缘栅场效应管集成电路,或称金属-氧化物-半导体(MOS)集成电路;另一类是双极型晶体管集成电路,又称晶体管-晶体管(TTL)集成电路。如同样是与非门,有CMOS与非门和TTL与非门之分,它们的逻辑功能是一样的,但其特性参数有差异。目前两类产品在市场上都有大量供应,因此分析这两类门电路特性参数的目的是在实际使用门电路时,能根据实际要求正确、合适地选择和使用它们。MOS集成电路的优点是集成度高、功耗低;TTL集成电路的优点是工作速度快、驱动能力强,缺点是功耗大、集成度较低。
数字集成电路按其集成度可分为:小规模集成电路(Small Scale Integration,SSI),集成10~20个元件(10~20个等效门);中规模集成电路(Medium Scale Integration,MSI),集成100~1000个元件(20~100个等效门);大规模集成电路(Large Scale Integration,LSI),集成1000~10000个元件(100~1000个等效门);超大规模集成电路(Very Large Scale Integration,VLSI),集成10000个元件(1000个等效门)以上。目前超大规模集成电路基本上都是MOS集成电路,其工作速度不断提高,并且已经接近双极型集成电路的工作速度。
数字电路中,用高、低电平分别表示二值逻辑的1和0两种逻辑状态,这是逻辑电路中的“正逻辑”;如果反过来用高、低电平分别表示二值逻辑的0和1两种逻辑状态,则
称为逻辑电路的“负逻辑”。如无特殊说明,本书将一直采用正逻辑。如何将连续的电压量变成分立的两个值呢?可取定一个分界电平,即门槛电平Vt,大于Vt称为高电平,小于Vt则称为低电平。由于在分界处Vt附近电路容易受干扰信号作用而不稳定,因此Vt应该是一个范围而不是一个值。在电路实际工作中,只要能区分出高、低电平,就可以知道它所表示的逻辑状态,故高、低电平都有一个允许的范围。同时,高、低电平也不是无限高或者无限低的,通常高电平VH不能高于正的电源电压,低电平VL不能低于地电平,如图2.1所示。正因为如此,数字电路无论是对元器件参数精度的要求还是对供电电源稳定度的要求,都比模拟电路低一些。或者说这是数字电路比模拟电路相对稳定的原因之一。
可以用互补开关电路来获得高、低输出电平,如图2.2所示。图2.2中,开关S1和S2
由半导体三极管组成,只要能通过输入信号VI控制三极管工作在饱和导通和截止两个状态,即可以起到开关的作用。在图2.2所示电路中,两个开关S1和S2的通断虽然受同一个输入信号的控制,但是它们的开关状态相反。若输入信号VI使S1导通,则S2为截止状态,输出信号VO为高电平;若输入信号VI使S1截止,则S2为导通状态,输出信号VO为低电平。可见,电路中总有一个开关是断开的,所以电路中始终没有同时通过S1和S2的电流,电路功耗非常小。因此,这种互补式开关电路在数字集成电路中得到了广泛应用。
图2.1 高、低电平及正逻辑与负逻辑
图2.2 获得高、低电平的开关电路
2.1 逻辑门电路中的开关器件
由图2.1可知,输入电压VI与逻辑值的关系是非线性的,所以可选择二极管、三极管及场效应管等非线性元件实现基本逻辑功能。对于理想开关,当开关闭合时,开关电阻R?0,开关电压V?0;当开关断开时,R??,经过开关的电流I?0;电路转换所用时间?t?0。本节讨论二极管、三极管以及MOS管等电子器件的开关特性。
2.1.1 二极管及其开关特性
1. 二极管的开关状态
半导体二极管相当于一个受外加电压控制的开关,当外加一定的正向电压时导通,外加反向电压时截止,其伏安特性曲线如图2.3所示。二极管处于正向导通区时相当于开关的导通状态,二极管处于反向截止区时相当于开关的截止状态。用二极管代替图2.2中的
开关S1,可以得到如图2.4所示的二极管开关电路。
图2.3 二极管的伏安特性曲线
图2.4 二极管开关电路
假定输入信号的高电平VIH?VCC,低电平VIL?0,二极管VD导通时的正向电阻为RD,反向内阻为无穷大。当VI?VIH时,VD截止,输出电平VO?VOH?VCC;当VI?VIL时,VD导通,这里假设使用了硅二极管,取其导通电压为0.7 V,则VO?VOL?0.7V。 VO?VOL?VD,
可见,用输入电平信号VI的高、低电平可以控制二极管的开关状态,从而在输出端得到相应的高、低电平信号。在上面的分析中,假定VD的反向内阻为无穷大,但是从二极管伏安特性曲线中可以看出,加反向电压时会有微弱的漏电流流过二极管,因此开关截止时的电阻不是无限大。另外,正向导通时的电阻往往也不能忽略。
2. 二极管的反向恢复时间
电路状态发生转换时,即加到二极管两端的电压突然反向时,电路状态不能瞬间改变。如图2.5所示,外加输入反向电压突然变成正向时,要等到PN结内建立起足够的电荷梯度后才开始有扩散电流形成,所以正向导通电流的建立要滞后一些。而当输入正向电压突然变成反向时,由于PN结中还有一定数量的存储电荷,所以有较大的瞬态反向电流,随着存储电荷的消散,反向电流迅速衰减并趋近于稳态时的反向漏电流。图2.5中的反向电流脉冲反映了这一特性。瞬态反向电流的大小和持续时间的长短与正向导通时电流的大小、反向电压的大小、外电路电阻的阻值大小以及二极管本身的特性有关。
反向电流持续的时间用反向恢复时间tr表示,同时也是二 极管作为开关使用时的开关时间。tr定义为反向电流从其峰值衰减到峰值的十分之一所经过的时间,通常在几纳秒以内。
图2.5 二极管动态电流波形
2.1.2 三极管及其开关特性
三极管有三种工作状态:截止、放大和饱和。在数字电路中常常使三极管处在截止或者饱和导通状态。
1. 三极管的开关状态
NPN型双极型晶体三极管的共射极接法如图2.6(a)所示,其输出特性曲线如图2.6(b)
所示。作为开关使用时,三极管往往工作在截止区和饱和区。
(a) 共射极接法 (b) 三极管输出特性曲线
图2.6 三极管电路及输出特性
当输入信号VI足够大使得三极管处于饱和导通状态时,集射极之间的电压Vce非常小,按硅管计算,Vce一般不超过0.3 V,此时输出端电压VO=Vce?0.3V,即输出低电平。当输入信号VI比较小使得三极管处于截止状态时,c、e间截止,集电极电流为零,所以VO=VCC?5V,即输出高电平。
在电路中选取适当的电压、电阻参数,使三极管处于开关状态。三极管的截止状态是指基极和射极之间的电压Vbe小于PN结导通电压0.7 V(以硅管为例),集电结和发射结都反向偏置的状态,此时Ib?Ic?0,Rce??;三极管的饱和导通状态是指Vbe?0.7V,而且集电结和发射结都处于正向偏置的状态,此时Ic??Ib(?是三极管的放大倍数);放大状态是介于截止和饱和状态之间的第三种状态,当Vbe?0.7V,即发射结正向偏置,但集电结反向偏置时,Ic??Ib,Ie?Ib?Ic,数字电路中往往不使用此状态。除此之外,在某种特殊的情况下,可能出现发射结反向偏置、集电结正向偏置的状态,称为三极管的“倒置”状态,相当于c、e端互换,此时Ie???Ib(??是倒置状态的放大倍数,通常为0.01~0.02),Ic?Ib?Ie。
2. 三极管的开关时间
当三极管处于截止区时,b端和c端、c端和e端间没有电流,相当于两个断开的开关;当三极管处于饱和导通区时,b端和c端经过一个PN结导通,c端和e端之间电压很小,相当于短路,因此可以看作一个闭合开关。
三极管可以看作两个背对背的PN结,当图2.6(a)中的电路的状态发生瞬间变化时,由于PN结内电荷的建立和消散都需要一定的时间,所以集电极电流Ic的变化将滞后于VI的变化,VO?VCC?Ic?Rc,因此VO的变化滞后于VI的变化,如图2.7所示。
定义从输入正脉冲作用的瞬间开始到集电极电流Ic上升到0.9Icmax所需的时间为开关的开启时间ton。这里Icmax为集电极电流的最大值,若三极管导通后处于饱和区,则Icmax就是集电极饱和电流Ics。定义从输入正脉冲结束的时刻到Ic下降到0.1Icmax所需的时间为开关的关闭时间toff。
图2.7 三极管的开关时间
相关推荐: