µÚÒ»·¶ÎÄÍø - רҵÎÄÕ·¶ÀýÎĵµ×ÊÁÏ·ÖÏíÆ½Ì¨

¸ßÊýÉϲáÄÚÈÝ×ܽá - ͼÎÄ 

À´Ô´£ºÓû§·ÖÏí ʱ¼ä£º2025/11/10 3:25:27 ±¾ÎÄÓÉloading ·ÖÏí ÏÂÔØÕâÆªÎĵµÊÖ»ú°æ
˵Ã÷£ºÎÄÕÂÄÚÈݽö¹©Ô¤ÀÀ£¬²¿·ÖÄÚÈÝ¿ÉÄܲ»È«£¬ÐèÒªÍêÕûÎĵµ»òÕßÐèÒª¸´ÖÆÄÚÈÝ£¬ÇëÏÂÔØwordºóʹÓá£ÏÂÔØwordÓÐÎÊÌâÇëÌí¼Ó΢ÐźÅ:xxxxxxx»òQQ£ºxxxxxx ´¦Àí£¨¾¡¿ÉÄܸøÄúÌṩÍêÕûÎĵµ£©£¬¸ÐлÄúµÄÖ§³ÖÓëÁ½⡣

µÚÒ»ÕÂÖ÷ÒªÄÚÈÝ

1 ¶¨Ò壺 Ò»¡¢¼«ÏÞ

2 ÔËËã·¨Ôò£º£¨1£©ËÄÔòÔËË㣨2£©¸´ºÏº¯Êý 3 ÐÔÖÊ£º£¨1£©ÓнçÐÔ £¨2£©Î¨Ò»ÐÔ £¨3£©±£ºÅÐÔ £¨4£©Óн纯ÊýÓëÎÞÇîСÁ¿µÄ³Ë»ýÊÇÎÞÇîСÁ¿¡£ £¨5£©limf(x)=A?f(x)=A+¦Á(x)£¬ ÆäÖÐlim¦Á(x)=0¡£ 4 ÎÞÇîСÁ¿µÄ½×£º »ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

5 Çó¼«Ï޵ķ½·¨£º

(1) ¶¨Ò壬ÔËËã·¨Ôò¼°ÐÔÖÊ; (2) ¼Ð±Æ¶¨Àí£»

(3) µ¥µ÷ÓнçÔ­Àí£¨ÇóÊýÁм«ÏÞ£©£» (4) µ¥²à¼«ÏÞÓ뼫Ï޵ĹØÏµ£» (5) Á½¸öÖØÒª¼«ÏÞ£º

sinx

lim=1x¡ú0x

1n

lim(1+)=en¡ú¡Þn

lim(1+x)=e

x¡ú0

1

x

1x

lim(1+)=ex¡ú¡Þx

»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

(6) ÀûÓõȼÛÎÞÇîС´ú»»£» (7) Âޱش﷨Ôò£¨×¢ÒâÓ¦ÓÃÌõ¼þ£©; £¨8£© ÀûÓÃÌ©ÀÕ¹«Ê½¡£ ³£ÓõĵȼÛÎÞÇîСÁ¿£º µ±x¡ú0ʱ , sinx~x£¬ tanx~x£¬ ln(1+x)~x arcsinx~x£¬ arctanx~x£¬ e?1~x, 12x

1?cosx~x, a?1~xlnx 2¦Á(1+x)?1~¦Áx , x

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

¶þ¡¢Á¬ÐøÐÔ

x¡úx0

1 ¶¨Ò壺limf(x)=f(x0)£»lim¦¤y=0¡£ ¦¤x¡ú0

2 ÐÔÖÊ£º £¨1£©³õµÈº¯ÊýÔÚÆä¶¨ÒåÓòÄÚÊÇÁ¬ÐøµÄ¡£ £¨2£©Á¬ÐøµÈ¼ÛÓë×óÓÒÁ¬ÐøÇÒÏàµÈ¡£ 3 ¼ä¶ÏµãµÄÀàÐÍ£º £¨1£©µÚÒ»Àà¼ä¶Ïµã£» £¨2£©µÚ¶þÀà¼ä¶Ïµã¡£ 4 ±ÕÇø¼äÉÏÁ¬Ðøº¯ÊýµÄÐÔÖÊ£º £¨1£© Áãµã´æÔÚ¶¨Àí£» £¨2£© ½éÖµ¶¨Àí£» £¨3£© ×î´óÖµ£¬×îСֵ¶¨Àí£» »ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

µÚ¶þÕÂÖ÷ÒªÄÚÈÝ

1¡¢µ¼ÊýµÄ¶¨Òå

¦¤yf(x0+¦¤x)?f(x0)

y¡äx=x0=lim.=lim

¦¤x¡ú0¦¤x¦¤x¡ú0¦¤x

f(x)?f(x0)f(x0+¦¤x)?f(x0)

f?¡ä(x0)=lim?=lim?;

x¡úx0¦¤x¡ú0x?x0¦¤x

f(x)?f(x0)f(x0+¦¤x)?f(x0)

f+¡ä(x0)=lim+=lim+;

x¡úx0¦¤x¡ú0x?x0¦¤x

º¯Êýf(x)ÔÚµãx0´¦¿Éµ¼?×óµ¼Êýf?¡ä(x0)ºÍÓÒ µ¼Êýf+¡ä(x0)¶¼´æÔÚÇÒÏàµÈ. »ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

2¡¢»ù±¾µ¼Êý¹«Ê½£¨³£ÊýºÍ»ù±¾³õµÈº¯ÊýµÄµ¼Êý¹«Ê½£©

(C)¡ä=0(sinx)¡ä=cosx(tanx)¡ä=sec2x(secx)¡ä=secxtgx(ax)¡ä=axlna(logx)¡ä=1axlna(arcsinx)¡ä=11?x2(arctanx)¡ä=11+x2(x¦Ì)¡ä=¦Ìx¦Ì?1(cosx)¡ä=?sinx(cotx)¡ä=?csc2x(cscx)¡ä=?cscxctgx(ex)¡ä=ex(lnx)¡ä=1x(arccosx)¡ä=?11?x2(arccotx)¡ä=?11+x2»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

3¡¢Çóµ¼·¨Ôò

(1) º¯ÊýµÄºÍ¡¢²î¡¢»ý¡¢É̵ÄÇóµ¼·¨Ôò

Éè u=u(x),v=v(x) ¿Éµ¼£¬Ôò £¨1£©(u¡Àv)¡ä=u¡ä¡Àv¡ä, £¨2£©(cu)¡ä=cu¡ä (cÊdz£Êý), ¡äv?uv¡äuu£¨3£©(uv)¡ä=u¡äv+uv¡ä, £¨4£©()¡ä=. (v¡Ù0)2vv(2) ·´º¯ÊýµÄÇóµ¼·¨ÔòÈç¹ûº¯Êýx=?(y)µÄ·´º¯ÊýΪy=f(x),ÔòÓÐ

1

f¡ä(x)=.

?¡ä(y)

»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

(3) ¸´ºÏº¯ÊýµÄÇóµ¼·¨Ôò

Éèy=f(u),¶øu=?(x)Ôò¸´ºÏº¯Êýy=f[?(x)]µÄdydydu=?µ¼ÊýΪ»òy¡ä(x)=f¡ä(u)??¡ä(x).dxdudx(4) ¶ÔÊýÇóµ¼·¨

ÏÈÔÚ·½³ÌÁ½±ßÈ¡¶ÔÊý,È»ºóÀûÓÃÒþº¯ÊýµÄÇóµ¼·½·¨Çó³öµ¼Êý.ÊÊÓ÷¶Î§:

¶à¸öº¯ÊýÏà³ËºÍÃÝÖ¸º¯Êýu(x)

v(x)

µÄÇéÐÎ.

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

(5) Òþº¯ÊýÇóµ¼·¨Ôò

Óø´ºÏº¯ÊýÇóµ¼·¨ÔòÖ±½Ó¶Ô·½³ÌÁ½±ßÇóµ¼.(6) ²Î±äÁ¿º¯ÊýµÄÇóµ¼·¨Ôò

?x=?(t)

Èô²ÎÊý·½³Ì?È·¶¨yÓëx¼äµÄº¯Êý¹ØÏµ,

?y=¦×(t)dy

2

¡ädydt¦×(t)dy¦×¡ä¡ä(t)?¡ä(t)?¦×¡ä(t)?¡ä¡ä(t)

==;.=23dxdx?¡ä(t)dx?¡ä(t)

dt

×¢Ò⣺1¡¢Êì¼ÇÇóµ¼¹«Ê½£» 2¡¢¸´ºÏº¯ÊýÇóµ¼ÒªÊìÁ·ÕÆÎÕ£» 3¡¢Çó·Ö¶Îº¯ÊýÔڷֶε㴦µÃµ½ÊÇÒªÓö¨Òå¡£»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

4¡¢¸ß½×µ¼Êý(¶þ½×ºÍ¶þ½×ÒÔÉϵĵ¼Êýͳ³ÆÎª¸ß½×µ¼Êý)

f¡ä(x+¦¤x)?f¡ä(x)¶þ½×µ¼Êýf¡ä¡ä(x)=lim,¦¤x¡ú0¦¤xÒ»°ãµØ,º¯Êýf(x)µÄn?1½×µ¼ÊýµÄµ¼Êý³ÆÎªº¯Êýf(x)µÄn½×µ¼Êý,¼Ç×÷f(n)(x),y(n)À³²¼Äá×ȹ«Ê½.

(n)

(n)

(n?1)

dydf(x),n»ò.ndxdx

nnn(n?1)(n?2)

v¡ä+uv¡ä¡ä(u?v)=uv+nu

2!

n(n?1)\(n?k+1)(n?k)(k)(n)+uv+\+uv

k!

=¡ÆCu

kn

k=0n

(n?k)(k)

v

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

³£Óõĸ߽׵¼Êý¹«Ê½

(1)(a)x(n)=a?lna(a>0)(n)nxn=ksin(kx+n?)2¦Ð(n)n

(3)(coskx)=kcos(kx+n?)

2

(2)(sinkx)¦Ð(e)

x(n)

=e

x

=n!

1(n)n?1(n?1)!(n)nn!(lnx)=(?1)(5)()=(?1)n+1n

xxx

1(n)n!1(n)n!n

=())=(?1)(n+1n+1

1?x(1?x)x¡À1(x¡À1)

(x)

(4)(x)

¦Á(n)

=¦Á(¦Á?1)\(¦Á?n+1)x

¦Á?n

n(n)

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

5¡¢Î¢·ÖµÄ¶¨Òå

¶¨ÒåÉ躯Êýy=f(x)ÔÚÄ³Çø¼äÄÚÓж¨Òå,x0¼°x0+¦¤xÔÚÕâÇø¼äÄÚ,Èç¹û¦¤y=f(x0+¦¤x)?f(x0)=A?¦¤x+o(¦¤x)³ÉÁ¢(ÆäÖÐAÊÇÓ릤xÎ޹صij£Êý),Ôò³Æº¯Êýy=f(x)ÔÚµãx0¿É΢,²¢ÇÒ³ÆA?¦¤xΪº¯Êýy=f(x)ÔÚµãx0ÏàÓ¦ÓÚ×Ô±äÁ¿ÔöÁ¿¦¤xµÄ΢·Ö,¼Ç×÷dyx=x0»òdf(x0),¼´dyx=x0=A?¦¤x.΢·Ödy½Ð×öº¯ÊýÔöÁ¿¦¤yµÄÏßÐÔÖ÷²¿.(΢·ÖµÄʵÖÊ)

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

6¡¢µ¼ÊýÓë΢·ÖµÄ¹ØÏµ

¶¨Àí

º¯Êýf(x)ÔÚµãx0¿É΢µÄ³äÒªÌõ¼þÊǺ¯Êýf(x)ÔÚµãx0´¦¿Éµ¼,ÇÒA=f¡ä(x0).

7¡¢Î¢·ÖµÄÇó·¨

dy=f¡ä(x)dx

Ç󷨣º¼ÆË㺯ÊýµÄµ¼Êý£¬³ËÒÔ×Ô±äÁ¿µÄ΢·Ö.

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

8¡¢Î¢·ÖµÄ»ù±¾·¨Ôò

d(u¡Àv)=du¡Àdvd(uv)=vdu+udv

º¯ÊýºÍ¡¢²î¡¢»ý¡¢É̵Ä΢·Ö·¨Ôò

d(Cu)=Cduuvdu?udvd()=2

vv

΢·ÖÐÎʽµÄ²»±äÐÔ

ÎÞÂÛxÊÇ×Ô±äÁ¿»¹ÊÇÖмä±äÁ¿,º¯Êýy=f(x)µÄ΢·ÖÐÎʽ×ÜÊÇ

dy=f¡ä(x)dx

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

»ù±¾³õµÈº¯ÊýµÄ΢·Ö¹«Ê½

d(C)=0

d(sinx)=cosxdx

2

d(x)=¦Ìxdxd(cosx)=?sinxdx

2

¦Ì¦Ì?1

d(tanx)=secxdxd(cotx)=?cscxdx

d(secx)=secxtanxdxd(cscx)=?cscxcotxdxd(a)=alnadx1

d(logax)=dx

xlna

1

d(arcsinx)=dx2

1?x1

d(arctanx)=2dx1+x

x

x

d(e)=edx

1

d(lnx)=dx

x

1

d(arccosx)=?dx2

1?x1

d(arccotx)=?2dx1+x

»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

xx

9¡¢µ¼ÊýºÍ΢·ÖµÄÇó·¨

1. ÕýȷʹÓõ¼Êý¼°Î¢·Ö¹«Ê½ºÍ·¨Ôò2. ÊìÁ·ÕÆÎÕÇóµ¼·½·¨ºÍ¼¼ÇÉ(1) Çó·Ö¶Îº¯ÊýµÄµ¼Êý

×¢ÒâÌÖÂÛ·Ö½çµã´¦×óÓÒµ¼ÊýÊÇ·ñ´æÔÚºÍÏàµÈ(2) Òþº¯ÊýÇóµ¼·¨(3) ²ÎÊý·½³ÌÇóµ¼·¨(5) ¸ß½×µ¼ÊýµÄÇó·¨

¶ÔÊý΢·Ö·¨

ת»¯

¼«×ø±ê·½³ÌÇóµ¼

(4) ¸´ºÏº¯ÊýÇóµ¼·¨(¿ÉÀûÓÃ΢·ÖÐÎʽ²»±äÐÔ)

Öð´ÎÇóµ¼¹éÄÉ;

¼ä½ÓÇóµ¼·¨;ÀûÓÃÀ³²¼Äá×ȹ«Ê½.

»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

µÚÈýÕÂÄÚÈÝС½á£º

Ò»¡¢Î¢·ÖÖÐÖµ¶¨Àí£º ÂÞ¶û(Rolle)ÖÐÖµ¶¨Àí£º Èôf(x)ÔÚ[a,b]ÉÏÁ¬Ðø£¬ÔÚ(a,b)Äڿɵ¼£¬ÇÒf(a)=f(b)£¬ÔòÔÚ(a,b)ÄÚÖÁÉÙ´æÔÚÒ»µã¦Î(a<¦Î

ÖÁÉÙ´æÔÚÒ»µã¦Î(a<¦Î

b?a

»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

¿ÂÎ÷(Cauchy)ÖÐÖµ¶¨Àí£º Éèf(x)ºÍg(x)ÔÚ[a,b]ÉÏÁ¬Ðø£¬ÔÚ(a,b)Äڿɵ¼£¬ÇÒg¡ä(x)ÔÚ(a,b)ÄÚÿһµã´¦¾ù²»ÎªÁ㣬ÔòÔÚ(a,b)ÄÚÖÁÉÙf(b)?f(a)f¡ä(¦Î)ÓÐÒ»µã¦Î(a<¦Î

Èý¡¢Ì©ÀÕ¹«Ê½£º

f¡ä¡ä(x0)2(x?x0)f(x)=f(x0)+f¡ä(x0)(x?x0)+ÆäÖлò

2!+\+f(n)(x0)n!(x?xn0)+Rn(x)(n+1)R(x)=f(¦Î)(n+1)!

(x?xn+1

n0)(¦ÎÔÚx0ÓëxÖ®¼ä)

Rn(x)=o((x?x0)n

)

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

Âó¿ËÀÍÁÖ(Maclaurin)¹«Ê½

f¡ä¡ä(0)2f(0)nf(x)=f(0)+f¡ä(0)x+x+\+x2!n!(n+1)f(¦Èx)n+1+x(0<¦È<1)(n+1)!¡ª¡ª´øÀ­¸ñÀÊÈÕÓàÏîµÄÂó¿ËÀÍÁÖ¹«Ê½

f¡ä¡ä(0)2f(0)nf(x)=f(0)+f¡ä(0)x+x+\+xn!2!n+o(x)(x¡ú0)(n)(n)¡ª¡ª´øÅåÑÇŵÓàÏîµÄÂó¿ËÀÍÁÖ¹«Ê½

»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

³£Óú¯ÊýµÄÂó¿ËÀÍÁÖ¹«Ê½

xµ±x¡ú0ʱ

121nne=1+x+x+\+x+o(x) 2!n!2n?1x3x5xn?12nx=x?+?+?+sin\(1)o(x) 3!5!(2n?1)!2462nxxxnxcosx=1?+?+\+(?1)+o(x2n+1) 2!4!6!(2n)!xxn?1xnln(1+x)=x?+?\+(?1)+o(x) 23n23n12nn=1+x+x+\+x+o(x) 1?xm(m?1)2m(1+x)=1+mx+x+\2! m(m?1)\(m?n+1)nn+x+o(x)n!»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

ËÄ¡¢µ¼ÊýµÄÓ¦ÓÃ

1 º¯Êýµ¥µ÷ÐÔµÄÅж¨·¨£º

Èôf¡ä(x)>0£¬Ôòy=f(x)µ¥µ÷Ôö¼Ó£»Èôf¡ä(x)<0£¬Ôòy=f(x)µ¥µ÷¼õÉÙ.

2 º¯Êý¼«ÖµµÄÅж¨·¨¶¨Àí1 (µÚÒ»³ä·ÖÌõ¼þ)£º

(1) Èôx¡Ê(x0?¦Ä,x0)ʱ£¬f¡ä(x)>0£»x¡Ê(x0,x0+¦Ä)ʱ, f¡ä(x)<0£¬Ôòf(x)ÔÚx0´¦È¡µÃ¼«´óÖµ. (2) Èôx¡Ê(x0?¦Ä,x0)ʱ£¬f¡ä(x)<0£»x¡Ê(x0,x0+¦Ä)ʱ£¬f¡ä(x)>0£»Ôòf(x)ÔÚx0´¦È¡µÃ¼«Ð¡Öµ. (3) Èôµ±x¡Ê(x0?¦Ä,x0)¼°x¡Ê(x0,x0+¦Ä)ʱ, f¡ä(x)µÄ·ûºÅÏàͬ£¬Ôòf(x)ÔÚx0´¦ÎÞ¼«Öµ. »ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

¶¨Àí2(µÚ¶þ³ä·ÖÌõ¼þ)

Éèf(x)ÔÚx0´¦¾ßÓжþ½×µ¼Êý,ÇÒf¡ä(x0)=0,f¡ä¡ä(x0)¡Ù0,Ôò (1) µ±f¡ä¡ä(x0)<0ʱ, º¯Êýf(x)ÔÚx0´¦È¡µÃ¼«´óÖµ£»(2) µ±f¡ä¡ä(x0)>0ʱ, º¯Êýf(x)ÔÚx0´¦È¡µÃ¼«Ð¡Öµ¡£3 Çó¼«ÖµµÄ²½Öè:

(1)Çóµ¼Êýf¡ä(x);

(2)Çóפµã£¬¼´·½³Ìf¡ä(x)=0µÄ¸ù;¼°²»¿Éµ¼µã¡£(3)¼ì²éf¡ä(x)ÔÚפµã¼°²»¿Éµ¼µã×óÓÒµÄÕý¸ººÅ

»òf¡ä¡ä(x)ÔڸõãµÄ·ûºÅ,Åжϼ«Öµµã;(4)Çó¼«Öµ.

»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

4 ×î´óÖµ¡¢×îСֵÎÊÌâÇó×îÖµµÄ²½Öè:£¨1£©ÇóפµãºÍ²»¿Éµ¼µã;

£¨2£©ÇóÇø¼ä¶Ëµã¼°×¤µãºÍ²»¿Éµ¼µãµÄº¯ÊýÖµ£¬±È½Ï

´óС£¬×î´óµÄ¾ÍÊÇ×î´óÖµ£¬×îСµÄ¾ÍÊÇ×îСֵ¡£Êµ¼ÊÎÊÌâÇó×îÖµ:£¨1£©½¨Á¢Ä¿±êº¯Êý;

£¨2£©Çó×îÖµ;

×¢Òâ:ÈôÄ¿±êº¯ÊýÖ»ÓÐΨһפµã£¬Ôò¸ÃµãµÄÊýÖµ¼´ÎªËùÇóµÄ×î´óÖµ£¨»ò×îСֵ£©£®»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

5 ÇúÏߵݼ͹Óë¹Õµã

£¨1£©°¼Í¹ÐԵ͍Òå¡¢¹ÕµãµÄ¶¨Ò壺£¨2£©°¼Í¹ÐÔµÄÅбð£º

Éèf(x)ÔÚ[a,b]ÉÏÁ¬Ðø,ÔÚ(a,b)ÄÚ¾ßÓжþ½×µ¼Êý,ÈôÔÚ(a,b)ÄÚ

(1)f¡ä¡ä(x)>0,Ôòf(x)ÔÚ[a,b]ÉϵÄͼÐÎÊǰ¼µÄ;(2)f¡ä¡ä(x)<0,Ôòf(x)ÔÚ[a,b]ÉϵÄͼÐÎÊÇ͹µÄ;

£¨3£©Çó¹ÕµãµÄ²½Ö裺

£¨1£©Çó³öf¡ä¡ä(x)=0µÄËùÓÐÁãµã£» £»£¨2£©Çó³öf¡ä¡ä(x)²»´æÔڵĵ㣨µ«f(x)Ôڴ˵ãÓж¨Ò壩£¨3£©¿¼²éf(x)ÔÚÕâЩµã×óÓҵݼ͹ÐÔ¡£ »ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

1

.ÇúÂʰ뾶¦Ñ=,6 ÇúÂÊ£ºÇúÂÊk=3

k22

(1+y¡ä)

7 ½¥½üÏߣº

(1)ˮƽ½¥½üÏߣº

Èç¹û

x¡ú+¡Þ

y¡ä¡ä

limf(x)=b»òlimf(x)=b(bΪ³£Êý)

x¡ú?¡Þ

ÄÇôy=b¾ÍÊÇy=f(x)µÄÒ»Ìõˮƽ½¥½üÏß.

£¨2£©Ð±½¥½üÏß

f(x)lim=a,lim[f(x)?ax]=b.

x¡ú¡Þx¡ú¡Þx

ÄÇôy=ax+b¾ÍÊÇÇúÏßy=f(x)µÄÒ»Ìõб½¥½üÏß.

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

8¡¢º¯Êý×÷ͼµÄ²½Öè

µÚÒ»²½È·¶¨º¯Êýy=f(x)µÄ¶¨ÒåÓò£¬¼ä¶Ïµã¡£¶Ôº¯Êý½øÐÐÆæÅ¼ÐÔ¡¢ÖÜÆÚÐÔµÈÐÔ̬µÄÌÖÂÛ£» µÚ¶þ²½Çó³öf¡ä(x)=0µÄµãºÍf¡ä(x)²»´æÔڵĵ㣬¼´Çó³öf(x)

µÄËùÓпÉÄܵļ«Öµµã£» µÚÈý²½Çó³öf¡ä¡ä(x)=0µÄµãºÍf¡ä¡ä(x)²»´æÔڵĵ㣬¼´Çó³öf(x)µÄËùÓпÉÄܵĹյ㣻 µÚËIJ½µÚÎå²½µÚÁù²½

ÁÐ±í£¬Åжϵ¥µ÷Çø¼ä£¬°¼Í¹Çø¼ä£¬¼«Öµµã£¬¹ÕµãµÈ£»ÇóÇúÏߵĽ¥½üÏߣ»

±ØÒªÊ±£¬¶¨³öÇúÏßµÄÄ³Ð©ÌØÊâµã£¬Èç½Ø¾àµÈ£» µÚÆß²½×÷ͼ¡£

»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

9 Ö¤Ã÷²»µÈʽ³£Óõķ½·¨£º

1£® ÀûÓõ¥µ÷ÐÔ¡¢¼«Öµ¡¢×îÖµ£» 2£® ÀûÓÃÀ­¸ñÀÊÈÕÖÐÖµ¶¨Àí£» 3£® ÀûÓÃÌ©ÀÕ¹«Ê½£¨´øÀ­¸ñÀÊÈÕÓàÏ£»4£® ÀûÓú¯Êý°¼Í¹ÐԵ͍Òå¡£ »ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

µÚËÄÕÂÄÚÈÝС½á

1¡¢²»¶¨»ý·ÖµÄ¸ÅÄ¡Òf(x)dx=F(x)+C;2¡¢²»¶¨»ý·ÖµÄ¼ÆË㣺

µÚÒ»»»Ôª·¨£¨´Õ΢·Ö·¨£©£»µÚ¶þ»»Ôª·¨£¨±äÁ¿Ìæ»»·¨£©£»·Ö²¿»ý·Ö·¨¡£

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

³£ÓõĴÕ΢·Ö¹«Ê½£º

11nn+1dx=d(ax+b);xdx=dx;an+11111dx=d(lnx);dx=2dx;2dx=?d()xxxxcosxdx=dsinx;sinxdx=?dcosx

secxdx=dtanx;cscxdx=?dcotx1

2dx=darctanx;1+x

1

dx=darcsinx2

1?xedx=de

x

x

2

2

1?1?

?1+2?dx=d(x?);

xx??

»ù±¾»ý·Ö±í

(1)(2)kdx=kx+C¡Òxdx=¡Ò¦Ì(kÊdz£Êý)+C(¦Ì¡Ù?1);x¦Ì+1¦Ì+1ÌØ±ðµØ

dx1

=?+C,2¡Òxx

¡Ò

dx

=2x+C,xdx(3)¡Ò=ln|x|+C;

x

(4)¡Òcosxdx=sinx+C;(5)

?cosx+C;sinxdx=¡Ò

»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

(6)(7)(8)(9)(10)(12)

¡Ò11+x2dx=arctanx+C;¡Ò11?x2dx=arcsinx+C;¡Òdxcos2

=¡Òsec2

xdx=tanx+C;¡Òdxxsinx¡Òcsc2

2=xdx=?cotx+C;

x

¡Òexdx=ex+C;(11)¡Òax

dx=alna

+C;

¡Ò

shxdx=chx+C;(13)¡Ò

chxdx=shx+C;»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

(14)

(15)

(16)

¡Òsecxdx=ln|secx+tanx|+C;

¡Ò

cscxdx=ln|cscx?cotx|+C;¡Ò

1x2¡Àa

2

dx=ln|x+x2¡Àa2

|+C.»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

µÚÎåÕÂÄÚÈÝС½á

1¡¢¶¨»ý·ÖµÄ¸ÅÄ

b

n

¡Òa

f(x)dx=lim¡Æf(¦Îi)¦¤xi,¦Ë=max{¦¤xi},¦Îi¡Ê[xi?1,xi]

¦Ë¡ú0

i=1

1¡Üi¡Ün

2¡¢¶¨»ý·ÖµÄ¼¸ºÎÒâÒ壺Çú±ßÌÝÐεÄÃæ»ý¡£

3¡¢ÐÔÖÊ£ºÏßÐÔÐÔÖÊ£»Çø¼ä¿É¼ÓÐÔ£»²»µÈʽµÄÐÔÖÊ£»

¹ÀÖµ¶¨Àí£»»ý·ÖÖÐÖµ¶¨Àí

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

4¡¢Newton-Leibniz ¹«Ê½£º

F(x)ÊÇf(x)µÄÔ­º¯Êý£¬Ôò

¡Òa

b

f(x)dx=F(x)=F(b)?F(a)

ba

5¡¢±äÉÏÏÞ»ý·Ö£º

x

¦µ(x)=¡Òf(t)dt,

a

¦µ¡ä(x)=f(x)

ÍÆ¹ã£ºÈô¦µ(x)=¡Ò

g(x)

h(x)

f(t)dt,Ôò

¦µ¡ä(x)=f(g(x))g¡ä(x)?f(h(x))h¡ä(x).

6¡¢¶¨»ý·Ö¼ÆËã·¨£º»»Ôª·¨Óë·Ö²¿»ý·Ö·¨£»×¢Ò⣺±»»ýº¯Êý´ø¾ø¶ÔÖµ»ò±»»ýº¯ÊýÊǷֶκ¯Êýʱ

¶¨»ý·ÖµÄ¼ÆËã»ý·Ö¡£Ò»Ð©ÌØÊâ»ý·Ö£º

¡Ò?a

a

??2¡Ò0f(x)dx,

f(x)dx=?

??0,

nT

a

f(x)żº¯Êý

£»

f(x)Ææº¯Êý

T

f(x+T)=f(x)?¡Ò

0

f(x)dx=n¡Òf(x)dx;

0

7¡¢¶¨»ý·ÖÓ¦ÓÃ

(1) Æ½ÃæÍ¼ÐεÄÃæ»ý

(2) Ìå»ý£º¢Ù(3) Æ½ÃæÇúÏߵĻ¡³¤(4) ±äÁ¦Ëù×÷µÄ¹¦(5) Ë®µÄ²àѹÁ¦(6) ÒýÁ¦

ÐýתÌåµÄÌå»ý(ÇÐÆ¬·¨ºÍÖù¿Ç·¨)£»

¢ÚÒÑ֪ƽÐнØÃæµÄÃæ»ýÇóÁ¢ÌåµÄÌå»ý¡£

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

¶¨»ý·ÖÓ¦Óõij£Óù«Ê½

(1) Æ½ÃæÍ¼ÐεÄÃæ»ýÖ±½Ç×ø±êÇéÐÎ

yy=f(x)yy=f2(x)AoAy=f1(x)ab

bxob

abxA=¡Òaf(x)dx

A=¡Òa[f2(x)?f1(x)]dx

»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

²ÎÊý·½³ÌËù±íʾµÄº¯Êý

?x=?(t)

Èç¹ûÇú±ßÌÝÐεÄÇú±ßΪ²ÎÊý·½³Ì?

?y=¦×(t)

Çú±ßÌÝÐεÄÃæ»ýA=¡Ò¦×(t)?¡ä(t)dtt

1

t2

£¨ÆäÖÐt1ºÍt2¶ÔÓ¦ÇúÏ߯ðµãÓëÖÕµãµÄ²ÎÊýÖµ£© ÔÚ[t1,t2]£¨»ò[t2,t1]£©ÉÏx=?(t)¾ßÓÐÁ¬Ðøµ¼Êý£¬

y=¦×(t)Á¬Ðø.

»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

¼«×ø±êÇéÐÎ

¦Âr=?(¦È)

d¦È¦ÁoxA=12¡Ò¦Â¦Á[?(¦È)]2

d¦È¦Âr=?2(¦È)

r=?1(¦È)¦ÁoxA=1¦Â22

2¡Ò¦Á[?2(¦È)??1(¦È)]d¦È»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

(2) ÐýתÌåµÄÌå»ý

yoxx+dxxydx=?(y)cox=¡Òb

a¦Ð[f(x)]2

dx

V=¡Òd

2

c¦Ð[?(y)]dy

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

VƽÐнØÃæÃæ»ýΪÒÑÖªµÄÁ¢ÌåµÄÌå»ý

A(x)o

axx+dxbxV=

¡ÒaA(x)dx

b

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

ÇóÐýתÌåÌå»ý¡ªÖù¿Ç·¨

Çú±ßÌÝÐÎy= f (x) £¬x=a,x=b,y=0 ÈÆy ÖáÐýת

y

V=2¦Ð¡Òxf(x)dx

a

b

y =f (x)0

adxx»ú¶¯

Ŀ¼

bx

ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

(3) Æ½ÃæÇúÏߵĻ¡³¤A£®ÇúÏß»¡Îªy=f(x)yB£®ÇúÏß»¡ÎªC£®ÇúÏß»¡Îª»¡³¤s=¡Òba1+y¡ä2dx}dy?oaxx+dxbx?x=?(t)

?y=¦×(t)

(¦Á¡Üt¡Ü¦Â)

ÆäÖÐ?(t),¦×(t)ÔÚ[¦Á,¦Â]ÉϾßÓÐÁ¬Ðøµ¼Êý

»¡³¤s=¡Ò¦Â¦Á?¡ä2

(t)+¦×¡ä2

(t)dtr=r(¦È)

(¦Á¡Ü¦È¡Ü¦Â)

»¡³¤s=¡Ò¦Â¦Ár2

(¦È)+r¡ä2

(¦È)d¦È»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

µÚÁùÕÂÄÚÈÝС½á

1¡¢Ò»½×΢·Ö·½³ÌµÄ½â·¨(1) ¿É·ÖÀë±äÁ¿µÄ΢·Ö·½³Ì

ÐÎÈç

g(y)dy=f(x)dx

½â·¨

g(y)dy=f(x)dx¡Ò¡Ò

ydy

ÐÎÈç=f()

xdx

·ÖÀë±äÁ¿·¨

(2) Æë´Î·½³Ì½â·¨

y

×÷±äÁ¿´ú»»u=

x

»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

(3) ¿É»¯ÎªÆë´ÎµÄ·½³Ì

ax+by+cabdyÐÎÈç=f(),ÆäÖСÙa1x+b1y+c1a1b1dxµ±c=c1=0ʱ,ΪÆë´Î·½³Ì£®·ñÔòΪ·ÇÆë´Î·½³Ì£®

½â·¨

Áî

x=X?x0,y=Y?y0£¬

»¯ÎªÆë´Î·½³Ì£®

?ax+by+c=0

ÆäÖÐx0,y0ÊÇ·½³Ì?µÄ¸ù¡£

?a1x+b1y+c1=0dy

(4) ÐÎÈç =f(ax+by+c) a,b,cÊdz£Êý¡£

dx

u=ax+by+c½â·¨Áî

»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

(5) Ò»½×ÏßÐÔ΢·Ö·½³Ì

dyÐÎÈç+P(x)y=Q(x)dxµ±Q(x)¡Ô0,ÉÏ·½³Ì³ÆÎªÆë´ÎµÄ£®

µ±Q(x)¡Ô0,

ÉÏ·½³Ì³ÆÎª·ÇÆë´ÎµÄ.

½â·¨Æë´Î·½³ÌµÄͨ½âΪ·ÇÆë´Î΢·Ö·½³ÌµÄͨ½âΪ

¡Òy=Ce

?P(x)dx

.

P(x)dx?¡ÒP(x)dx¡Òy=[¡ÒQ(x)edx+C]e

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

(6) ²®Å¬Àû(Bernoulli)·½³Ì

dy¦ÁÐÎÈç+P(x)y=Q(x)ydxµ±¦Á=0,1ʱ£¬·½³ÌΪÏßÐÔ΢·Ö·½³Ì.µ±¦Á¡Ù0,1ʱ£¬·½³ÌΪ·ÇÏßÐÔ΢·Ö·½³Ì.

½â·¨

y

1?¦ÁÁîz=y

1?¦Á,

=z

?(1?¦Á)P(x)dx

(1?¦Á)P(x)dx¡Ò(¡ÒQ(x)(1?¦Á)edx+C).

¡Ò=e

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

2¡¢¿É½µ½×µÄ¸ß½×΢·Ö·½³ÌµÄ½â·¨

(1)2)

(3)

y

(n)

=f(x)ÐÍ

½â·¨½ÓÁ¬»ý·Ön´Î£¬µÃͨ½â£®

y¡ä¡ä=f(x,y¡ä)ÐÍ

ÌØµã²»ÏÔº¬Î´Öªº¯Êýy.

½â·¨

Áîy¡ä=P(x),

y¡ä¡ä=P¡ä,

´úÈëÔ­·½³Ì, µÃ

P¡ä=f(x,P(x)).

y¡ä¡ä=f(y,y¡ä)ÐÍ

ÌØµã²»ÏÔº¬×Ô±äÁ¿x.

½â·¨Áîy¡ä=P(y),y¡ä¡ä=Pdp

dy

,´úÈëÔ­·½³Ì, µÃ

Pdp

dy

=f(y,P).»ú¶¯

Ŀ¼

ÉÏÒ³

ÏÂÒ³

·µ»Ø

½áÊø

(3¡¢¶þ½×³£ÏµÊýÆë´ÎÏßÐÔ·½³Ì½â·¨

ÐÎÈçy

(n)

+P1y

(n?1)

+\+Pn?1y¡ä+Pny=f(x)

n ½×³£ÏµÊýÏßÐÔ΢·Ö·½³Ì

y¡ä¡ä+py¡ä+qy=0

¶þ½×³£ÏµÊýÆë´ÎÏßÐÔ·½³Ì

y¡ä¡ä+py¡ä+qy=f(x)¶þ½×³£ÏµÊý·ÇÆë´ÎÏßÐÔ·½³Ì

½â·¨Óɳ£ÏµÊýÆë´ÎÏßÐÔ·½³ÌµÄÌØÕ÷·½³ÌµÄ¸ùÈ·

¶¨Æäͨ½âµÄ·½·¨³ÆÎªÌØÕ÷·½³Ì·¨.

»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø

ËÑË÷¸ü¶à¹ØÓÚ£º ¸ßÊýÉϲáÄÚÈÝ×ܽá - ͼÎÄ  µÄÎĵµ
¸ßÊýÉϲáÄÚÈÝ×ܽá - ͼÎÄ .doc ½«±¾ÎĵÄWordÎĵµÏÂÔØµ½µçÄÔ£¬·½±ã¸´ÖÆ¡¢±à¼­¡¢ÊղغʹòÓ¡
±¾ÎÄÁ´½Ó£ºhttps://www.diyifanwen.net/c2sj598cqjj1x2cx44ebs_1.html£¨×ªÔØÇë×¢Ã÷ÎÄÕÂÀ´Ô´£©
ÈÈÃÅÍÆ¼ö
Copyright © 2012-2023 µÚÒ»·¶ÎÄÍø °æÈ¨ËùÓÐ ÃâÔðÉùÃ÷ | ÁªÏµÎÒÃÇ
ÉùÃ÷ :±¾ÍøÕ¾×ðÖØ²¢±£»¤ÖªÊ¶²úȨ£¬¸ù¾Ý¡¶ÐÅÏ¢ÍøÂç´«²¥È¨±£»¤ÌõÀý¡·£¬Èç¹ûÎÒÃÇ×ªÔØµÄ×÷Æ·ÇÖ·¸ÁËÄúµÄȨÀû,ÇëÔÚÒ»¸öÔÂÄÚ֪ͨÎÒÃÇ£¬ÎÒÃǻἰʱɾ³ý¡£
¿Í·þQQ£ºxxxxxx ÓÊÏ䣺xxxxxx@qq.com
ÓåICP±¸2023013149ºÅ
Top