µÚÒ»ÕÂÖ÷ÒªÄÚÈÝ
1 ¶¨Ò壺 Ò»¡¢¼«ÏÞ
2 ÔËËã·¨Ôò£º£¨1£©ËÄÔòÔËË㣨2£©¸´ºÏº¯Êý 3 ÐÔÖÊ£º£¨1£©ÓнçÐÔ £¨2£©Î¨Ò»ÐÔ £¨3£©±£ºÅÐÔ £¨4£©Óн纯ÊýÓëÎÞÇîСÁ¿µÄ³Ë»ýÊÇÎÞÇîСÁ¿¡£ £¨5£©limf(x)=A?f(x)=A+¦Á(x)£¬ ÆäÖÐlim¦Á(x)=0¡£ 4 ÎÞÇîСÁ¿µÄ½×£º »ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
5 Çó¼«Ï޵ķ½·¨£º
(1) ¶¨Ò壬ÔËËã·¨Ôò¼°ÐÔÖÊ; (2) ¼Ð±Æ¶¨Àí£»
(3) µ¥µ÷ÓнçÔÀí£¨ÇóÊýÁм«ÏÞ£©£» (4) µ¥²à¼«ÏÞÓ뼫Ï޵ĹØÏµ£» (5) Á½¸öÖØÒª¼«ÏÞ£º
sinx
lim=1x¡ú0x
1n
lim(1+)=en¡ú¡Þn
lim(1+x)=e
x¡ú0
1
x
1x
lim(1+)=ex¡ú¡Þx
»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
(6) ÀûÓõȼÛÎÞÇîС´ú»»£» (7) Âޱش﷨Ôò£¨×¢ÒâÓ¦ÓÃÌõ¼þ£©; £¨8£© ÀûÓÃÌ©ÀÕ¹«Ê½¡£ ³£ÓõĵȼÛÎÞÇîСÁ¿£º µ±x¡ú0ʱ , sinx~x£¬ tanx~x£¬ ln(1+x)~x arcsinx~x£¬ arctanx~x£¬ e?1~x, 12x
1?cosx~x, a?1~xlnx 2¦Á(1+x)?1~¦Áx , x
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
¶þ¡¢Á¬ÐøÐÔ
x¡úx0
1 ¶¨Ò壺limf(x)=f(x0)£»lim¦¤y=0¡£ ¦¤x¡ú0
2 ÐÔÖÊ£º £¨1£©³õµÈº¯ÊýÔÚÆä¶¨ÒåÓòÄÚÊÇÁ¬ÐøµÄ¡£ £¨2£©Á¬ÐøµÈ¼ÛÓë×óÓÒÁ¬ÐøÇÒÏàµÈ¡£ 3 ¼ä¶ÏµãµÄÀàÐÍ£º £¨1£©µÚÒ»Àà¼ä¶Ïµã£» £¨2£©µÚ¶þÀà¼ä¶Ïµã¡£ 4 ±ÕÇø¼äÉÏÁ¬Ðøº¯ÊýµÄÐÔÖÊ£º £¨1£© Áãµã´æÔÚ¶¨Àí£» £¨2£© ½éÖµ¶¨Àí£» £¨3£© ×î´óÖµ£¬×îСֵ¶¨Àí£» »ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
µÚ¶þÕÂÖ÷ÒªÄÚÈÝ
1¡¢µ¼ÊýµÄ¶¨Òå
¦¤yf(x0+¦¤x)?f(x0)
y¡äx=x0=lim.=lim
¦¤x¡ú0¦¤x¦¤x¡ú0¦¤x
f(x)?f(x0)f(x0+¦¤x)?f(x0)
f?¡ä(x0)=lim?=lim?;
x¡úx0¦¤x¡ú0x?x0¦¤x
f(x)?f(x0)f(x0+¦¤x)?f(x0)
f+¡ä(x0)=lim+=lim+;
x¡úx0¦¤x¡ú0x?x0¦¤x
º¯Êýf(x)ÔÚµãx0´¦¿Éµ¼?×óµ¼Êýf?¡ä(x0)ºÍÓÒ µ¼Êýf+¡ä(x0)¶¼´æÔÚÇÒÏàµÈ. »ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
2¡¢»ù±¾µ¼Êý¹«Ê½£¨³£ÊýºÍ»ù±¾³õµÈº¯ÊýµÄµ¼Êý¹«Ê½£©
(C)¡ä=0(sinx)¡ä=cosx(tanx)¡ä=sec2x(secx)¡ä=secxtgx(ax)¡ä=axlna(logx)¡ä=1axlna(arcsinx)¡ä=11?x2(arctanx)¡ä=11+x2(x¦Ì)¡ä=¦Ìx¦Ì?1(cosx)¡ä=?sinx(cotx)¡ä=?csc2x(cscx)¡ä=?cscxctgx(ex)¡ä=ex(lnx)¡ä=1x(arccosx)¡ä=?11?x2(arccotx)¡ä=?11+x2»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
3¡¢Çóµ¼·¨Ôò
(1) º¯ÊýµÄºÍ¡¢²î¡¢»ý¡¢É̵ÄÇóµ¼·¨Ôò
Éè u=u(x),v=v(x) ¿Éµ¼£¬Ôò £¨1£©(u¡Àv)¡ä=u¡ä¡Àv¡ä, £¨2£©(cu)¡ä=cu¡ä (cÊdz£Êý), ¡äv?uv¡äuu£¨3£©(uv)¡ä=u¡äv+uv¡ä, £¨4£©()¡ä=. (v¡Ù0)2vv(2) ·´º¯ÊýµÄÇóµ¼·¨ÔòÈç¹ûº¯Êýx=?(y)µÄ·´º¯ÊýΪy=f(x),ÔòÓÐ
1
f¡ä(x)=.
?¡ä(y)
»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
(3) ¸´ºÏº¯ÊýµÄÇóµ¼·¨Ôò
Éèy=f(u),¶øu=?(x)Ôò¸´ºÏº¯Êýy=f[?(x)]µÄdydydu=?µ¼ÊýΪ»òy¡ä(x)=f¡ä(u)??¡ä(x).dxdudx(4) ¶ÔÊýÇóµ¼·¨
ÏÈÔÚ·½³ÌÁ½±ßÈ¡¶ÔÊý,È»ºóÀûÓÃÒþº¯ÊýµÄÇóµ¼·½·¨Çó³öµ¼Êý.ÊÊÓ÷¶Î§:
¶à¸öº¯ÊýÏà³ËºÍÃÝÖ¸º¯Êýu(x)
v(x)
µÄÇéÐÎ.
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
(5) Òþº¯ÊýÇóµ¼·¨Ôò
Óø´ºÏº¯ÊýÇóµ¼·¨ÔòÖ±½Ó¶Ô·½³ÌÁ½±ßÇóµ¼.(6) ²Î±äÁ¿º¯ÊýµÄÇóµ¼·¨Ôò
?x=?(t)
Èô²ÎÊý·½³Ì?È·¶¨yÓëx¼äµÄº¯Êý¹ØÏµ,
?y=¦×(t)dy
2
¡ädydt¦×(t)dy¦×¡ä¡ä(t)?¡ä(t)?¦×¡ä(t)?¡ä¡ä(t)
==;.=23dxdx?¡ä(t)dx?¡ä(t)
dt
×¢Ò⣺1¡¢Êì¼ÇÇóµ¼¹«Ê½£» 2¡¢¸´ºÏº¯ÊýÇóµ¼ÒªÊìÁ·ÕÆÎÕ£» 3¡¢Çó·Ö¶Îº¯ÊýÔڷֶε㴦µÃµ½ÊÇÒªÓö¨Òå¡£»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
4¡¢¸ß½×µ¼Êý(¶þ½×ºÍ¶þ½×ÒÔÉϵĵ¼Êýͳ³ÆÎª¸ß½×µ¼Êý)
f¡ä(x+¦¤x)?f¡ä(x)¶þ½×µ¼Êýf¡ä¡ä(x)=lim,¦¤x¡ú0¦¤xÒ»°ãµØ,º¯Êýf(x)µÄn?1½×µ¼ÊýµÄµ¼Êý³ÆÎªº¯Êýf(x)µÄn½×µ¼Êý,¼Ç×÷f(n)(x),y(n)À³²¼Äá×ȹ«Ê½.
(n)
(n)
(n?1)
dydf(x),n»ò.ndxdx
nnn(n?1)(n?2)
v¡ä+uv¡ä¡ä(u?v)=uv+nu
2!
n(n?1)\(n?k+1)(n?k)(k)(n)+uv+\+uv
k!
=¡ÆCu
kn
k=0n
(n?k)(k)
v
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
³£Óõĸ߽׵¼Êý¹«Ê½
(1)(a)x(n)=a?lna(a>0)(n)nxn=ksin(kx+n?)2¦Ð(n)n
(3)(coskx)=kcos(kx+n?)
2
(2)(sinkx)¦Ð(e)
x(n)
=e
x
=n!
1(n)n?1(n?1)!(n)nn!(lnx)=(?1)(5)()=(?1)n+1n
xxx
1(n)n!1(n)n!n
=())=(?1)(n+1n+1
1?x(1?x)x¡À1(x¡À1)
(x)
(4)(x)
¦Á(n)
=¦Á(¦Á?1)\(¦Á?n+1)x
¦Á?n
n(n)
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
5¡¢Î¢·ÖµÄ¶¨Òå
¶¨ÒåÉ躯Êýy=f(x)ÔÚÄ³Çø¼äÄÚÓж¨Òå,x0¼°x0+¦¤xÔÚÕâÇø¼äÄÚ,Èç¹û¦¤y=f(x0+¦¤x)?f(x0)=A?¦¤x+o(¦¤x)³ÉÁ¢(ÆäÖÐAÊÇÓ릤xÎ޹صij£Êý),Ôò³Æº¯Êýy=f(x)ÔÚµãx0¿É΢,²¢ÇÒ³ÆA?¦¤xΪº¯Êýy=f(x)ÔÚµãx0ÏàÓ¦ÓÚ×Ô±äÁ¿ÔöÁ¿¦¤xµÄ΢·Ö,¼Ç×÷dyx=x0»òdf(x0),¼´dyx=x0=A?¦¤x.΢·Ödy½Ð×öº¯ÊýÔöÁ¿¦¤yµÄÏßÐÔÖ÷²¿.(΢·ÖµÄʵÖÊ)
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
6¡¢µ¼ÊýÓë΢·ÖµÄ¹ØÏµ
¶¨Àí
º¯Êýf(x)ÔÚµãx0¿É΢µÄ³äÒªÌõ¼þÊǺ¯Êýf(x)ÔÚµãx0´¦¿Éµ¼,ÇÒA=f¡ä(x0).
7¡¢Î¢·ÖµÄÇó·¨
dy=f¡ä(x)dx
Ç󷨣º¼ÆË㺯ÊýµÄµ¼Êý£¬³ËÒÔ×Ô±äÁ¿µÄ΢·Ö.
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
8¡¢Î¢·ÖµÄ»ù±¾·¨Ôò
d(u¡Àv)=du¡Àdvd(uv)=vdu+udv
º¯ÊýºÍ¡¢²î¡¢»ý¡¢É̵Ä΢·Ö·¨Ôò
d(Cu)=Cduuvdu?udvd()=2
vv
΢·ÖÐÎʽµÄ²»±äÐÔ
ÎÞÂÛxÊÇ×Ô±äÁ¿»¹ÊÇÖмä±äÁ¿,º¯Êýy=f(x)µÄ΢·ÖÐÎʽ×ÜÊÇ
dy=f¡ä(x)dx
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
»ù±¾³õµÈº¯ÊýµÄ΢·Ö¹«Ê½
d(C)=0
d(sinx)=cosxdx
2
d(x)=¦Ìxdxd(cosx)=?sinxdx
2
¦Ì¦Ì?1
d(tanx)=secxdxd(cotx)=?cscxdx
d(secx)=secxtanxdxd(cscx)=?cscxcotxdxd(a)=alnadx1
d(logax)=dx
xlna
1
d(arcsinx)=dx2
1?x1
d(arctanx)=2dx1+x
x
x
d(e)=edx
1
d(lnx)=dx
x
1
d(arccosx)=?dx2
1?x1
d(arccotx)=?2dx1+x
»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
xx
9¡¢µ¼ÊýºÍ΢·ÖµÄÇó·¨
1. ÕýȷʹÓõ¼Êý¼°Î¢·Ö¹«Ê½ºÍ·¨Ôò2. ÊìÁ·ÕÆÎÕÇóµ¼·½·¨ºÍ¼¼ÇÉ(1) Çó·Ö¶Îº¯ÊýµÄµ¼Êý
×¢ÒâÌÖÂÛ·Ö½çµã´¦×óÓÒµ¼ÊýÊÇ·ñ´æÔÚºÍÏàµÈ(2) Òþº¯ÊýÇóµ¼·¨(3) ²ÎÊý·½³ÌÇóµ¼·¨(5) ¸ß½×µ¼ÊýµÄÇó·¨
¶ÔÊý΢·Ö·¨
ת»¯
¼«×ø±ê·½³ÌÇóµ¼
(4) ¸´ºÏº¯ÊýÇóµ¼·¨(¿ÉÀûÓÃ΢·ÖÐÎʽ²»±äÐÔ)
Öð´ÎÇóµ¼¹éÄÉ;
¼ä½ÓÇóµ¼·¨;ÀûÓÃÀ³²¼Äá×ȹ«Ê½.
»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
µÚÈýÕÂÄÚÈÝС½á£º
Ò»¡¢Î¢·ÖÖÐÖµ¶¨Àí£º ÂÞ¶û(Rolle)ÖÐÖµ¶¨Àí£º Èôf(x)ÔÚ[a,b]ÉÏÁ¬Ðø£¬ÔÚ(a,b)Äڿɵ¼£¬ÇÒf(a)=f(b)£¬ÔòÔÚ(a,b)ÄÚÖÁÉÙ´æÔÚÒ»µã¦Î(a<¦Î
ÖÁÉÙ´æÔÚÒ»µã¦Î(a<¦Î
b?a
»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
¿ÂÎ÷(Cauchy)ÖÐÖµ¶¨Àí£º Éèf(x)ºÍg(x)ÔÚ[a,b]ÉÏÁ¬Ðø£¬ÔÚ(a,b)Äڿɵ¼£¬ÇÒg¡ä(x)ÔÚ(a,b)ÄÚÿһµã´¦¾ù²»ÎªÁ㣬ÔòÔÚ(a,b)ÄÚÖÁÉÙf(b)?f(a)f¡ä(¦Î)ÓÐÒ»µã¦Î(a<¦Î
Èý¡¢Ì©ÀÕ¹«Ê½£º
f¡ä¡ä(x0)2(x?x0)f(x)=f(x0)+f¡ä(x0)(x?x0)+ÆäÖлò
2!+\+f(n)(x0)n!(x?xn0)+Rn(x)(n+1)R(x)=f(¦Î)(n+1)!
(x?xn+1
n0)(¦ÎÔÚx0ÓëxÖ®¼ä)
Rn(x)=o((x?x0)n
)
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
Âó¿ËÀÍÁÖ(Maclaurin)¹«Ê½
f¡ä¡ä(0)2f(0)nf(x)=f(0)+f¡ä(0)x+x+\+x2!n!(n+1)f(¦Èx)n+1+x(0<¦È<1)(n+1)!¡ª¡ª´øÀ¸ñÀÊÈÕÓàÏîµÄÂó¿ËÀÍÁÖ¹«Ê½
f¡ä¡ä(0)2f(0)nf(x)=f(0)+f¡ä(0)x+x+\+xn!2!n+o(x)(x¡ú0)(n)(n)¡ª¡ª´øÅåÑÇŵÓàÏîµÄÂó¿ËÀÍÁÖ¹«Ê½
»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
³£Óú¯ÊýµÄÂó¿ËÀÍÁÖ¹«Ê½
xµ±x¡ú0ʱ
121nne=1+x+x+\+x+o(x) 2!n!2n?1x3x5xn?12nx=x?+?+?+sin\(1)o(x) 3!5!(2n?1)!2462nxxxnxcosx=1?+?+\+(?1)+o(x2n+1) 2!4!6!(2n)!xxn?1xnln(1+x)=x?+?\+(?1)+o(x) 23n23n12nn=1+x+x+\+x+o(x) 1?xm(m?1)2m(1+x)=1+mx+x+\2! m(m?1)\(m?n+1)nn+x+o(x)n!»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
ËÄ¡¢µ¼ÊýµÄÓ¦ÓÃ
1 º¯Êýµ¥µ÷ÐÔµÄÅж¨·¨£º
Èôf¡ä(x)>0£¬Ôòy=f(x)µ¥µ÷Ôö¼Ó£»Èôf¡ä(x)<0£¬Ôòy=f(x)µ¥µ÷¼õÉÙ.
2 º¯Êý¼«ÖµµÄÅж¨·¨¶¨Àí1 (µÚÒ»³ä·ÖÌõ¼þ)£º
(1) Èôx¡Ê(x0?¦Ä,x0)ʱ£¬f¡ä(x)>0£»x¡Ê(x0,x0+¦Ä)ʱ, f¡ä(x)<0£¬Ôòf(x)ÔÚx0´¦È¡µÃ¼«´óÖµ. (2) Èôx¡Ê(x0?¦Ä,x0)ʱ£¬f¡ä(x)<0£»x¡Ê(x0,x0+¦Ä)ʱ£¬f¡ä(x)>0£»Ôòf(x)ÔÚx0´¦È¡µÃ¼«Ð¡Öµ. (3) Èôµ±x¡Ê(x0?¦Ä,x0)¼°x¡Ê(x0,x0+¦Ä)ʱ, f¡ä(x)µÄ·ûºÅÏàͬ£¬Ôòf(x)ÔÚx0´¦ÎÞ¼«Öµ. »ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
¶¨Àí2(µÚ¶þ³ä·ÖÌõ¼þ)
Éèf(x)ÔÚx0´¦¾ßÓжþ½×µ¼Êý,ÇÒf¡ä(x0)=0,f¡ä¡ä(x0)¡Ù0,Ôò (1) µ±f¡ä¡ä(x0)<0ʱ, º¯Êýf(x)ÔÚx0´¦È¡µÃ¼«´óÖµ£»(2) µ±f¡ä¡ä(x0)>0ʱ, º¯Êýf(x)ÔÚx0´¦È¡µÃ¼«Ð¡Öµ¡£3 Çó¼«ÖµµÄ²½Öè:
(1)Çóµ¼Êýf¡ä(x);
(2)Çóפµã£¬¼´·½³Ìf¡ä(x)=0µÄ¸ù;¼°²»¿Éµ¼µã¡£(3)¼ì²éf¡ä(x)ÔÚפµã¼°²»¿Éµ¼µã×óÓÒµÄÕý¸ººÅ
»òf¡ä¡ä(x)ÔڸõãµÄ·ûºÅ,Åжϼ«Öµµã;(4)Çó¼«Öµ.
»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
4 ×î´óÖµ¡¢×îСֵÎÊÌâÇó×îÖµµÄ²½Öè:£¨1£©ÇóפµãºÍ²»¿Éµ¼µã;
£¨2£©ÇóÇø¼ä¶Ëµã¼°×¤µãºÍ²»¿Éµ¼µãµÄº¯ÊýÖµ£¬±È½Ï
´óС£¬×î´óµÄ¾ÍÊÇ×î´óÖµ£¬×îСµÄ¾ÍÊÇ×îСֵ¡£Êµ¼ÊÎÊÌâÇó×îÖµ:£¨1£©½¨Á¢Ä¿±êº¯Êý;
£¨2£©Çó×îÖµ;
×¢Òâ:ÈôÄ¿±êº¯ÊýÖ»ÓÐΨһפµã£¬Ôò¸ÃµãµÄÊýÖµ¼´ÎªËùÇóµÄ×î´óÖµ£¨»ò×îСֵ£©£®»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
5 ÇúÏߵݼ͹Óë¹Õµã
£¨1£©°¼Í¹ÐԵ͍Òå¡¢¹ÕµãµÄ¶¨Ò壺£¨2£©°¼Í¹ÐÔµÄÅбð£º
Éèf(x)ÔÚ[a,b]ÉÏÁ¬Ðø,ÔÚ(a,b)ÄÚ¾ßÓжþ½×µ¼Êý,ÈôÔÚ(a,b)ÄÚ
(1)f¡ä¡ä(x)>0,Ôòf(x)ÔÚ[a,b]ÉϵÄͼÐÎÊǰ¼µÄ;(2)f¡ä¡ä(x)<0,Ôòf(x)ÔÚ[a,b]ÉϵÄͼÐÎÊÇ͹µÄ;
£¨3£©Çó¹ÕµãµÄ²½Ö裺
£¨1£©Çó³öf¡ä¡ä(x)=0µÄËùÓÐÁãµã£» £»£¨2£©Çó³öf¡ä¡ä(x)²»´æÔڵĵ㣨µ«f(x)Ôڴ˵ãÓж¨Ò壩£¨3£©¿¼²éf(x)ÔÚÕâЩµã×óÓҵݼ͹ÐÔ¡£ »ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
1
.ÇúÂʰ뾶¦Ñ=,6 ÇúÂÊ£ºÇúÂÊk=3
k22
(1+y¡ä)
7 ½¥½üÏߣº
(1)ˮƽ½¥½üÏߣº
Èç¹û
x¡ú+¡Þ
y¡ä¡ä
limf(x)=b»òlimf(x)=b(bΪ³£Êý)
x¡ú?¡Þ
ÄÇôy=b¾ÍÊÇy=f(x)µÄÒ»Ìõˮƽ½¥½üÏß.
£¨2£©Ð±½¥½üÏß
f(x)lim=a,lim[f(x)?ax]=b.
x¡ú¡Þx¡ú¡Þx
ÄÇôy=ax+b¾ÍÊÇÇúÏßy=f(x)µÄÒ»Ìõб½¥½üÏß.
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
8¡¢º¯Êý×÷ͼµÄ²½Öè
µÚÒ»²½È·¶¨º¯Êýy=f(x)µÄ¶¨ÒåÓò£¬¼ä¶Ïµã¡£¶Ôº¯Êý½øÐÐÆæÅ¼ÐÔ¡¢ÖÜÆÚÐÔµÈÐÔ̬µÄÌÖÂÛ£» µÚ¶þ²½Çó³öf¡ä(x)=0µÄµãºÍf¡ä(x)²»´æÔڵĵ㣬¼´Çó³öf(x)
µÄËùÓпÉÄܵļ«Öµµã£» µÚÈý²½Çó³öf¡ä¡ä(x)=0µÄµãºÍf¡ä¡ä(x)²»´æÔڵĵ㣬¼´Çó³öf(x)µÄËùÓпÉÄܵĹյ㣻 µÚËIJ½µÚÎå²½µÚÁù²½
ÁÐ±í£¬Åжϵ¥µ÷Çø¼ä£¬°¼Í¹Çø¼ä£¬¼«Öµµã£¬¹ÕµãµÈ£»ÇóÇúÏߵĽ¥½üÏߣ»
±ØÒªÊ±£¬¶¨³öÇúÏßµÄÄ³Ð©ÌØÊâµã£¬Èç½Ø¾àµÈ£» µÚÆß²½×÷ͼ¡£
»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
9 Ö¤Ã÷²»µÈʽ³£Óõķ½·¨£º
1£® ÀûÓõ¥µ÷ÐÔ¡¢¼«Öµ¡¢×îÖµ£» 2£® ÀûÓÃÀ¸ñÀÊÈÕÖÐÖµ¶¨Àí£» 3£® ÀûÓÃÌ©ÀÕ¹«Ê½£¨´øÀ¸ñÀÊÈÕÓàÏ£»4£® ÀûÓú¯Êý°¼Í¹ÐԵ͍Òå¡£ »ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
µÚËÄÕÂÄÚÈÝС½á
1¡¢²»¶¨»ý·ÖµÄ¸ÅÄ¡Òf(x)dx=F(x)+C;2¡¢²»¶¨»ý·ÖµÄ¼ÆË㣺
µÚÒ»»»Ôª·¨£¨´Õ΢·Ö·¨£©£»µÚ¶þ»»Ôª·¨£¨±äÁ¿Ìæ»»·¨£©£»·Ö²¿»ý·Ö·¨¡£
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
³£ÓõĴÕ΢·Ö¹«Ê½£º
11nn+1dx=d(ax+b);xdx=dx;an+11111dx=d(lnx);dx=2dx;2dx=?d()xxxxcosxdx=dsinx;sinxdx=?dcosx
secxdx=dtanx;cscxdx=?dcotx1
2dx=darctanx;1+x
1
dx=darcsinx2
1?xedx=de
x
x
2
2
1?1?
?1+2?dx=d(x?);
xx??
»ù±¾»ý·Ö±í
(1)(2)kdx=kx+C¡Òxdx=¡Ò¦Ì(kÊdz£Êý)+C(¦Ì¡Ù?1);x¦Ì+1¦Ì+1ÌØ±ðµØ
dx1
=?+C,2¡Òxx
¡Ò
dx
=2x+C,xdx(3)¡Ò=ln|x|+C;
x
(4)¡Òcosxdx=sinx+C;(5)
?cosx+C;sinxdx=¡Ò
»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
(6)(7)(8)(9)(10)(12)
¡Ò11+x2dx=arctanx+C;¡Ò11?x2dx=arcsinx+C;¡Òdxcos2
=¡Òsec2
xdx=tanx+C;¡Òdxxsinx¡Òcsc2
2=xdx=?cotx+C;
x
¡Òexdx=ex+C;(11)¡Òax
dx=alna
+C;
¡Ò
shxdx=chx+C;(13)¡Ò
chxdx=shx+C;»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
(14)
(15)
(16)
¡Òsecxdx=ln|secx+tanx|+C;
¡Ò
cscxdx=ln|cscx?cotx|+C;¡Ò
1x2¡Àa
2
dx=ln|x+x2¡Àa2
|+C.»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
µÚÎåÕÂÄÚÈÝС½á
1¡¢¶¨»ý·ÖµÄ¸ÅÄ
b
n
¡Òa
f(x)dx=lim¡Æf(¦Îi)¦¤xi,¦Ë=max{¦¤xi},¦Îi¡Ê[xi?1,xi]
¦Ë¡ú0
i=1
1¡Üi¡Ün
2¡¢¶¨»ý·ÖµÄ¼¸ºÎÒâÒ壺Çú±ßÌÝÐεÄÃæ»ý¡£
3¡¢ÐÔÖÊ£ºÏßÐÔÐÔÖÊ£»Çø¼ä¿É¼ÓÐÔ£»²»µÈʽµÄÐÔÖÊ£»
¹ÀÖµ¶¨Àí£»»ý·ÖÖÐÖµ¶¨Àí
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
4¡¢Newton-Leibniz ¹«Ê½£º
F(x)ÊÇf(x)µÄÔº¯Êý£¬Ôò
¡Òa
b
f(x)dx=F(x)=F(b)?F(a)
ba
5¡¢±äÉÏÏÞ»ý·Ö£º
x
¦µ(x)=¡Òf(t)dt,
a
¦µ¡ä(x)=f(x)
ÍÆ¹ã£ºÈô¦µ(x)=¡Ò
g(x)
h(x)
f(t)dt,Ôò
¦µ¡ä(x)=f(g(x))g¡ä(x)?f(h(x))h¡ä(x).
6¡¢¶¨»ý·Ö¼ÆËã·¨£º»»Ôª·¨Óë·Ö²¿»ý·Ö·¨£»×¢Ò⣺±»»ýº¯Êý´ø¾ø¶ÔÖµ»ò±»»ýº¯ÊýÊǷֶκ¯Êýʱ
¶¨»ý·ÖµÄ¼ÆËã»ý·Ö¡£Ò»Ð©ÌØÊâ»ý·Ö£º
¡Ò?a
a
??2¡Ò0f(x)dx,
f(x)dx=?
??0,
nT
a
f(x)żº¯Êý
£»
f(x)Ææº¯Êý
T
f(x+T)=f(x)?¡Ò
0
f(x)dx=n¡Òf(x)dx;
0
7¡¢¶¨»ý·ÖÓ¦ÓÃ
(1) Æ½ÃæÍ¼ÐεÄÃæ»ý
(2) Ìå»ý£º¢Ù(3) Æ½ÃæÇúÏߵĻ¡³¤(4) ±äÁ¦Ëù×÷µÄ¹¦(5) Ë®µÄ²àѹÁ¦(6) ÒýÁ¦
ÐýתÌåµÄÌå»ý(ÇÐÆ¬·¨ºÍÖù¿Ç·¨)£»
¢ÚÒÑ֪ƽÐнØÃæµÄÃæ»ýÇóÁ¢ÌåµÄÌå»ý¡£
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
¶¨»ý·ÖÓ¦Óõij£Óù«Ê½
(1) Æ½ÃæÍ¼ÐεÄÃæ»ýÖ±½Ç×ø±êÇéÐÎ
yy=f(x)yy=f2(x)AoAy=f1(x)ab
bxob
abxA=¡Òaf(x)dx
A=¡Òa[f2(x)?f1(x)]dx
»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
²ÎÊý·½³ÌËù±íʾµÄº¯Êý
?x=?(t)
Èç¹ûÇú±ßÌÝÐεÄÇú±ßΪ²ÎÊý·½³Ì?
?y=¦×(t)
Çú±ßÌÝÐεÄÃæ»ýA=¡Ò¦×(t)?¡ä(t)dtt
1
t2
£¨ÆäÖÐt1ºÍt2¶ÔÓ¦ÇúÏ߯ðµãÓëÖÕµãµÄ²ÎÊýÖµ£© ÔÚ[t1,t2]£¨»ò[t2,t1]£©ÉÏx=?(t)¾ßÓÐÁ¬Ðøµ¼Êý£¬
y=¦×(t)Á¬Ðø.
»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
¼«×ø±êÇéÐÎ
¦Âr=?(¦È)
d¦È¦ÁoxA=12¡Ò¦Â¦Á[?(¦È)]2
d¦È¦Âr=?2(¦È)
r=?1(¦È)¦ÁoxA=1¦Â22
2¡Ò¦Á[?2(¦È)??1(¦È)]d¦È»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
(2) ÐýתÌåµÄÌå»ý
yoxx+dxxydx=?(y)cox=¡Òb
a¦Ð[f(x)]2
dx
V=¡Òd
2
c¦Ð[?(y)]dy
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
VƽÐнØÃæÃæ»ýΪÒÑÖªµÄÁ¢ÌåµÄÌå»ý
A(x)o
axx+dxbxV=
¡ÒaA(x)dx
b
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
ÇóÐýתÌåÌå»ý¡ªÖù¿Ç·¨
Çú±ßÌÝÐÎy= f (x) £¬x=a,x=b,y=0 ÈÆy ÖáÐýת
y
V=2¦Ð¡Òxf(x)dx
a
b
y =f (x)0
adxx»ú¶¯
Ŀ¼
bx
ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
(3) Æ½ÃæÇúÏߵĻ¡³¤A£®ÇúÏß»¡Îªy=f(x)yB£®ÇúÏß»¡ÎªC£®ÇúÏß»¡Îª»¡³¤s=¡Òba1+y¡ä2dx}dy?oaxx+dxbx?x=?(t)
?y=¦×(t)
(¦Á¡Üt¡Ü¦Â)
ÆäÖÐ?(t),¦×(t)ÔÚ[¦Á,¦Â]ÉϾßÓÐÁ¬Ðøµ¼Êý
»¡³¤s=¡Ò¦Â¦Á?¡ä2
(t)+¦×¡ä2
(t)dtr=r(¦È)
(¦Á¡Ü¦È¡Ü¦Â)
»¡³¤s=¡Ò¦Â¦Ár2
(¦È)+r¡ä2
(¦È)d¦È»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
µÚÁùÕÂÄÚÈÝС½á
1¡¢Ò»½×΢·Ö·½³ÌµÄ½â·¨(1) ¿É·ÖÀë±äÁ¿µÄ΢·Ö·½³Ì
ÐÎÈç
g(y)dy=f(x)dx
½â·¨
g(y)dy=f(x)dx¡Ò¡Ò
ydy
ÐÎÈç=f()
xdx
·ÖÀë±äÁ¿·¨
(2) Æë´Î·½³Ì½â·¨
y
×÷±äÁ¿´ú»»u=
x
»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
(3) ¿É»¯ÎªÆë´ÎµÄ·½³Ì
ax+by+cabdyÐÎÈç=f(),ÆäÖСÙa1x+b1y+c1a1b1dxµ±c=c1=0ʱ,ΪÆë´Î·½³Ì£®·ñÔòΪ·ÇÆë´Î·½³Ì£®
½â·¨
Áî
x=X?x0,y=Y?y0£¬
»¯ÎªÆë´Î·½³Ì£®
?ax+by+c=0
ÆäÖÐx0,y0ÊÇ·½³Ì?µÄ¸ù¡£
?a1x+b1y+c1=0dy
(4) ÐÎÈç =f(ax+by+c) a,b,cÊdz£Êý¡£
dx
u=ax+by+c½â·¨Áî
»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
(5) Ò»½×ÏßÐÔ΢·Ö·½³Ì
dyÐÎÈç+P(x)y=Q(x)dxµ±Q(x)¡Ô0,ÉÏ·½³Ì³ÆÎªÆë´ÎµÄ£®
µ±Q(x)¡Ô0,
ÉÏ·½³Ì³ÆÎª·ÇÆë´ÎµÄ.
½â·¨Æë´Î·½³ÌµÄͨ½âΪ·ÇÆë´Î΢·Ö·½³ÌµÄͨ½âΪ
¡Òy=Ce
?P(x)dx
.
P(x)dx?¡ÒP(x)dx¡Òy=[¡ÒQ(x)edx+C]e
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
(6) ²®Å¬Àû(Bernoulli)·½³Ì
dy¦ÁÐÎÈç+P(x)y=Q(x)ydxµ±¦Á=0,1ʱ£¬·½³ÌΪÏßÐÔ΢·Ö·½³Ì.µ±¦Á¡Ù0,1ʱ£¬·½³ÌΪ·ÇÏßÐÔ΢·Ö·½³Ì.
½â·¨
y
1?¦ÁÁîz=y
1?¦Á,
=z
?(1?¦Á)P(x)dx
(1?¦Á)P(x)dx¡Ò(¡ÒQ(x)(1?¦Á)edx+C).
¡Ò=e
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
2¡¢¿É½µ½×µÄ¸ß½×΢·Ö·½³ÌµÄ½â·¨
(1)2)
(3)
y
(n)
=f(x)ÐÍ
½â·¨½ÓÁ¬»ý·Ön´Î£¬µÃͨ½â£®
y¡ä¡ä=f(x,y¡ä)ÐÍ
ÌØµã²»ÏÔº¬Î´Öªº¯Êýy.
½â·¨
Áîy¡ä=P(x),
y¡ä¡ä=P¡ä,
´úÈëÔ·½³Ì, µÃ
P¡ä=f(x,P(x)).
y¡ä¡ä=f(y,y¡ä)ÐÍ
ÌØµã²»ÏÔº¬×Ô±äÁ¿x.
½â·¨Áîy¡ä=P(y),y¡ä¡ä=Pdp
dy
,´úÈëÔ·½³Ì, µÃ
Pdp
dy
=f(y,P).»ú¶¯
Ŀ¼
ÉÏÒ³
ÏÂÒ³
·µ»Ø
½áÊø
(3¡¢¶þ½×³£ÏµÊýÆë´ÎÏßÐÔ·½³Ì½â·¨
ÐÎÈçy
(n)
+P1y
(n?1)
+\+Pn?1y¡ä+Pny=f(x)
n ½×³£ÏµÊýÏßÐÔ΢·Ö·½³Ì
y¡ä¡ä+py¡ä+qy=0
¶þ½×³£ÏµÊýÆë´ÎÏßÐÔ·½³Ì
y¡ä¡ä+py¡ä+qy=f(x)¶þ½×³£ÏµÊý·ÇÆë´ÎÏßÐÔ·½³Ì
½â·¨Óɳ£ÏµÊýÆë´ÎÏßÐÔ·½³ÌµÄÌØÕ÷·½³ÌµÄ¸ùÈ·
¶¨Æäͨ½âµÄ·½·¨³ÆÎªÌØÕ÷·½³Ì·¨.
»ú¶¯Ä¿Â¼ÉÏÒ³ÏÂÒ³·µ»Ø½áÊø
Ïà¹ØÍÆ¼ö£º