学校代码: 10722 学号: 1006024112
分类号: O151.21 密级: 公开
题 目: 正定矩阵的判定、性质及其应用
Discussion on Determinant,Positive and Application of
Positive Definite Matrix
作 者 姓 名: 专 业 名 称: 学 科 门 类: 指 导 老 师: 提交论文日期: 2014年5月 成 绩 评 定:
I 咸阳师范学院2014届本科毕业毕业论文(设计)
摘 要
在高等代数的学习中,我们详细学习了二次型的相关知识,并且从中引出了正定矩阵的概念。事实上,正定矩阵是代数中一类非常重要的矩阵,它在不等式证明、极值求解、特征值求解、系统稳定性判定中都有着非常重要的应用。本文首先介绍了实对称矩阵的定义,然后给出了判定正定矩阵的7条定理,接着总结归纳了正定矩阵的相关性质,最后通过举例说明了正定矩阵在证明不等式、判断函数极值等方面的应用。
关键词:实对称;正定矩阵;判定;性质
1 I
正定矩阵的判定、性质及其应用
Abstract
We have studied the concept of quadratic form and the definition of positive-definite matrix is introduced.In fact,positive definite matrix is a kind of very important matrix in algebra, it can be applied to the value of extreme and eigenvalue,the prove of inequality and stability analysis of system.This paper firstly introduced the definition of real symmetric matrices,and 7 theorems are given to determine positive definite matrix,then the related properties of positive definite matrix were summarized, the positive definite matrix in the application of proving inequality,function extreme and so on were illustrated finally.
Keywords:properties,determinant,real symmetric, positive-definite matrix.
II
相关推荐: