解法二:如图,不妨设0≤α≤β<2π,且点A的坐标是(cosα,
sinα),点B的坐标是(cosβ,sinβ),则点A,B在单位圆x2+y2=1上.连结
连结OC,于是OC⊥AB,若设点D的坐标是(1,0),再连结OA,OB,则有
解法三:由题设得 4(sinα+sinβ)=3(cosα+cosβ).
将②式代入①式,可得 sin(α-)=sin(-β). 于是 α-=(2k+1)π-(-β)(k∈Z), 或 α-=2kπ+(-β)(k∈Z).
若 α-=(2k+1)π-(-β)(k∈Z),则α=β+(2k+1)π(k∈Z). 于是 sinα=-sinβ,即sinα+sinβ=0.
由此可知
α-=2kπ+(-β)(k∈Z),
即 α+β=2+2kπ(k∈Z).
所以
(23)本小题考查直线和平面,直线和直线的位置关系,二面角等基本知识,以及逻辑推理能力和空间想象能力.
解法一:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.
又已知 SC⊥DE,BE∩DE=E, ∴SC⊥面BDE, ∴SC⊥BD.
又 ∵SA⊥底面ABC,BD在底面ABC上, ∴SA⊥BD.
而SC∩SA=S,∴BD⊥面SAC.
∵DE=面SAC∩面BDE,DC=面SAC∩面BDC, ∴BD⊥DE,BD⊥DC.
∴∠EDC是所求的二面角的平面角. ∵SA⊥底面ABC,∴SA⊥AB,SA⊥AC. 设SA=a,
又因为AB⊥BC,
∴∠ACS=30°.
又已知DE⊥SC,所以∠EDC=60°,即所求的二面角等于60°.
解法二:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.
又已知SC⊥DE,BE∩DE=E∴SC⊥面BDE, ∴SC⊥BD.
由于SA⊥底面ABC,且A是垂足,所以AC是SC在平面ABC上的射影.
由三垂线定理的逆定理得BD⊥AC;又因E∈SC,AC是SC在平面ABC上的射影,所以E在平面ABC上的射影在AC上,由于D∈AC,所以DE在平面 ABC上的射影也在AC上,根据三垂
线定理又得BD⊥DE.
∵DE面BDE,DC面BDC,
∴∠EDC是所求的二面角的平面角. 以下同解法一.
(24)本小题考查复数与解方程等基本知识以及综合分析能力. 解法一:设z=x+yi,代入原方程得
于是原方程等价于方程组
由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.
情形1.若y=0,即求原方程的实数解z=x.此时,①式化为 x2+2│x│=a. ③
(Ⅰ)令x>0,方程③变为x2+2x=a. ④
.
由此可知:当a=0时,方程④无正根;
(Ⅱ)令x<0,方程③变为x2-2x=a. ⑤
.
由此可知:当a=0时,方程⑤无负根; 当a>0时,方程⑤有负根
x=1-.
(Ⅲ)令x=0,方程③变为0=a.
由此可知:当a=0时,方程⑥有零解x=0; 当a>0时,方程⑥无零解. 所以,原方程的实数解是: 当a=0时,z=0;
.
情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y2+2│y│=a. ⑦
(Ⅰ)令y>0,方程⑦变为-y2+2y=a,即(y-1)2=1-a. ⑧ 由此可知:当a>1时,方程⑧无实根. 当a≤1时解方程⑧得
y=1±
,
从而,
当a=0时,方程⑧有正根 y=2;
.
当0 (Ⅱ)令y<0,方程⑦变为-y2-2y=a,即 由此可知:当a>1时,方程⑨无实根. 当a≤1时解方程⑨得 y=-1± (y+1)2=1-a. ⑨ , 从而,当a=0时,方程⑨有负根 y=-2; 当0 )i,z=±(1- )i. 而当a>1时,原方程无纯虚数解. 解法二:设z=x+yi代入原方程得 于是原方程等价于方程组 由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论. 情形1.若y=0,即求原方程的实数解z=x.此时,①式化为 x2+2│x│=a. 即 | x |2+2│x│=a. ③ 解方程③得 所以,原方程的实数解是 . , 情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y2+2│y│=a. 即 -│y│2 +2│y│=a. ④ 当a=0时,因y≠0,解方程④得│y│=2, 即当a=0时,原方程的纯虚数解是z=±2i. 当0 ,
相关推荐: