第一范文网 - 专业文章范例文档资料分享平台

1990年全国高考数学理科

来源:用户分享 时间:2025/7/1 4:41:47 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

解法二:如图,不妨设0≤α≤β<2π,且点A的坐标是(cosα,

sinα),点B的坐标是(cosβ,sinβ),则点A,B在单位圆x2+y2=1上.连结

连结OC,于是OC⊥AB,若设点D的坐标是(1,0),再连结OA,OB,则有

解法三:由题设得 4(sinα+sinβ)=3(cosα+cosβ).

将②式代入①式,可得 sin(α-)=sin(-β). 于是 α-=(2k+1)π-(-β)(k∈Z), 或 α-=2kπ+(-β)(k∈Z).

若 α-=(2k+1)π-(-β)(k∈Z),则α=β+(2k+1)π(k∈Z). 于是 sinα=-sinβ,即sinα+sinβ=0.

由此可知

α-=2kπ+(-β)(k∈Z),

即 α+β=2+2kπ(k∈Z).

所以

(23)本小题考查直线和平面,直线和直线的位置关系,二面角等基本知识,以及逻辑推理能力和空间想象能力.

解法一:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.

又已知 SC⊥DE,BE∩DE=E, ∴SC⊥面BDE, ∴SC⊥BD.

又 ∵SA⊥底面ABC,BD在底面ABC上, ∴SA⊥BD.

而SC∩SA=S,∴BD⊥面SAC.

∵DE=面SAC∩面BDE,DC=面SAC∩面BDC, ∴BD⊥DE,BD⊥DC.

∴∠EDC是所求的二面角的平面角. ∵SA⊥底面ABC,∴SA⊥AB,SA⊥AC. 设SA=a,

又因为AB⊥BC,

∴∠ACS=30°.

又已知DE⊥SC,所以∠EDC=60°,即所求的二面角等于60°.

解法二:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.

又已知SC⊥DE,BE∩DE=E∴SC⊥面BDE, ∴SC⊥BD.

由于SA⊥底面ABC,且A是垂足,所以AC是SC在平面ABC上的射影.

由三垂线定理的逆定理得BD⊥AC;又因E∈SC,AC是SC在平面ABC上的射影,所以E在平面ABC上的射影在AC上,由于D∈AC,所以DE在平面 ABC上的射影也在AC上,根据三垂

线定理又得BD⊥DE.

∵DE面BDE,DC面BDC,

∴∠EDC是所求的二面角的平面角. 以下同解法一.

(24)本小题考查复数与解方程等基本知识以及综合分析能力. 解法一:设z=x+yi,代入原方程得

于是原方程等价于方程组

由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.

情形1.若y=0,即求原方程的实数解z=x.此时,①式化为 x2+2│x│=a. ③

(Ⅰ)令x>0,方程③变为x2+2x=a. ④

.

由此可知:当a=0时,方程④无正根;

(Ⅱ)令x<0,方程③变为x2-2x=a. ⑤

.

由此可知:当a=0时,方程⑤无负根; 当a>0时,方程⑤有负根

x=1-.

(Ⅲ)令x=0,方程③变为0=a.

由此可知:当a=0时,方程⑥有零解x=0; 当a>0时,方程⑥无零解. 所以,原方程的实数解是: 当a=0时,z=0;

.

情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y2+2│y│=a. ⑦

(Ⅰ)令y>0,方程⑦变为-y2+2y=a,即(y-1)2=1-a. ⑧ 由此可知:当a>1时,方程⑧无实根. 当a≤1时解方程⑧得

y=1±

,

从而,

当a=0时,方程⑧有正根 y=2;

.

当0

(Ⅱ)令y<0,方程⑦变为-y2-2y=a,即

由此可知:当a>1时,方程⑨无实根.

当a≤1时解方程⑨得 y=-1±

(y+1)2=1-a. ⑨

,

从而,当a=0时,方程⑨有负根 y=-2;

当0

)i,z=±(1-

)i.

而当a>1时,原方程无纯虚数解.

解法二:设z=x+yi代入原方程得

于是原方程等价于方程组

由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.

情形1.若y=0,即求原方程的实数解z=x.此时,①式化为 x2+2│x│=a.

即 | x |2+2│x│=a. ③ 解方程③得

所以,原方程的实数解是

. ,

情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为 -y2+2│y│=a.

即 -│y│2 +2│y│=a. ④

当a=0时,因y≠0,解方程④得│y│=2, 即当a=0时,原方程的纯虚数解是z=±2i. 当0

,

即当0

搜索更多关于: 1990年全国高考数学理科 的文档
1990年全国高考数学理科.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2uusa4t20c175lm25rpi_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top